

ANNUAL CALVING EASE YEARLING BULL SALE

26th September 2024

Bull Videos Available via BIDR & twinoaksangus.co.nz

Angus PRO

PARTNE

This sale will be hosted by bidr[®] (bidr.co.nz) as a HYBRID ON-FARM auction, with online bidding and a live-stream available for online purchasers.

All intending online purchasers must register with bidr[®] using an account held with one of the bidr[®] partner agencies in advance of the sale date.

The bidr[®] team is available to assist intending purchasers with signing up and registering - please call 0800 TO BIDR (0800 86 2437), or email enquiries@bidr.co.nz for assistance at any point.

Alternatively, contact your local bidr^{*} representative:

Liam Beattie General Manager 021 918 554

Olivia Manley Lower North Island Territory Manager 027 348 6354

Sam Murphy Lower South Island Territory Manager 027 243 2736 **Bruno Santos** Upper North Island Territory Manager 027 221 8276

Mckenzie Alfeld Upper South Island Territory Manager 027 341 8066

Bianca Perkins Business Development Coordinator 027 732 0006

bidr.co.nz

ANNUAL CALVING EASE YEARLING BULL SALE 26TH SEPTEMBER 2024

WAIPAPA STATION, 163 CLEMETT ROAD, TE AKAU

Inspection from 10:30am Sale Commences 1pm Sale shed phone 07 829 7574

For any enquiries or for inspection before the sale, please contact

ROGER AND SUSAN HAYWARD

Email twinoaksangus@gmail.com Roger Mobile 027 685 5989 Susan Mobile 027 274 5636

Every Day is available to view the bulls. Please ring, email or message to book a time. Sale will be conducted on farm and on BIDR.

Bull videos will be available before the sale via BIDR & twinoaksangus.co.nz

Richard Johnston Hazlett P 027 444 3511

Rod Sands PGG Wrightson Livestock Rep, Sth Canty P 027 431 4043

Bruce Orr Carrfields P 027 492 2122

Bruce Dunbar PGG Wrightson Livestock Mackenzie P 027 595 6473 Callum Dunnett Hazlett P 027 462 0126

John McKone PGG Wrightson, Livestock Genetics Auctioneer P 027 229 9375

Vaughan Larson PGG Wrightson Livestock Waikato P 027 801 4599 Cam Heggie PGG Wrightson Livestock Genetics Rep. P 027 501 8182

Kelvin Sadler PGG Wrightson Livestock South Canterbury P 027 430 2029

Craig Knight PGG Wrightson Livestock Otago P 027 590 1331

Buy your tags direct from us!

ANGUSPURE NATIONAL TERRITORY MANAGER

Mobile: +64 27 550 4018 | Phone: +64 6 835 8221 | Email: kim@anguspure.co.nz

SHOP ONLINE WWW.ANGUSPURE.CO.NZ

FOREWORD

Welcome to our annual CALVING EASE YEARLING BULL SALE.

We are proud of the team of bulls we have lined up for you this September. We are excited about the combination of type, EBV's in the top 25% of the breed and pedigrees on offer.

This sale is unique in that all bulls for sale are suitable for heifer mating. All bulls must pass strict semen testing, so we know they are all ready to work!

At Twin Oaks we have always mated yearlings - what great mothers they are! It is so exciting to see the twoyear-old cows out on the hills with their calves, adding genetic gain to our programme and yours. There are a number of heifers' calves in this sale.

Fertility is paramount at Twin Oaks. Only females that get in calf are retained in the herd (no carryovers) and bulls are only run with cows for 5 weeks. It is our job to test our cows so that they produce progeny ready to improve beef breeding in NZ.

There are a few new sires that feature in this catalogue.

Millah Murrah Rector R53 is an exciting addition to our bull team. His progeny are strong, powerful and showing great type, as well as hitting EBV's that are industry improving.

Dunoon Recharge R102 was used in AI. He shows amazing growth with huge carcass and IMF. His progeny are just like him - growthy and sound!

We welcome you to visit on sale day or anytime. Our gate is always open, the coffee hot and the beer cold!

Roger, Susan, Thomas, Olivia and Jessica Hayward Twin Oaks Angus NZ

Olivia, Roger, Susan, Thomas & Jessica

PLEASE BRING THIS CATALOGUE TO THE SALE

We are a business built on the belief that people come first

Our commitment to you is to provide quality advice, timely deliveries and extremely competitive pricing. **Give us a call and we'll prove it.**

- > Callum Dunnett 027 462 0126
- Richard Johnston 027 444 3511
- > Rowan Sandford 027 215 3215
- > Chris Johnston 027 421 3197
- > Tom Mowat 027 462 0190
- > Angus Hazlett 027 462 0136
- > Tim Bond 027 900 5011
- > Duke Loe 021 363 755

INDEX

1	TWIN OAKS U061	22	TWIN OAKS U211	43	TWIN OAKS U243
2	TWIN OAKS U021	23	TWIN OAKS U075	44	TWIN OAKS U307
3	TWIN OAKS U003	24	TWIN OAKS U173	45	TWIN OAKS U233
4	TWIN OAKS U139	25	TWIN OAKS U119	46	TWIN OAKS U313
5	TWIN OAKS U067	26	TWIN OAKS U057	47	TWIN OAKS U009
6	TWIN OAKS U183	27	TWIN OAKS U025	48	TWIN OAKS U129
7	TWIN OAKS U141	28	TWIN OAKS U041	49	TWIN OAKS U283
8	TWIN OAKS U071	29	TWIN OAKS U155	50	TWIN OAKS U093
9	TWIN OAKS U113	30	TWIN OAKS U005	51	TWIN OAKS U239
10	TWIN OAKS U095	31	TWIN OAKS U235	52	TWIN OAKS U081
11	TWIN OAKS U035	32	TWIN OAKS U209	53	TWIN OAKS U247
12	WITHDRAWN	33	TWIN OAKS U051	54	TWIN OAKS U007
13	TWIN OAKS U059	34	TWIN OAKS U189	55	TWIN OAKS U249
14	TWIN OAKS U027	35	TWIN OAKS U091	56	TWIN OAKS U029
15	TWIN OAKS U237	36	TWIN OAKS U013	57	TWIN OAKS U053
16	TWIN OAKS U255	37	TWIN OAKS U145	58	TWIN OAKS U065
17	TWIN OAKS U227	38	TWIN OAKS U149	59	TWIN OAKS U159
18	TWIN OAKS U203	39	TWIN OAKS U257	60	TWIN OAKS U215
19	TWIN OAKS U219	40	TWIN OAKS U287	61	TWIN OAKS U317
20	TWIN OAKS U151	41	TWIN OAKS U273	62	TWIN OAKS U267
21	TWIN OAKS U245	42	TWIN OAKS U305	63	TWIN OAKS U241

PARENT VERIFICATION EXPLAINED

The suffix displayed at the end of each animal's name indicates the DNA parentage verification that has been conducted by Angus New Zealand. The suffixes, and respective definitions are:

PV: both parents have been verified by DNA

SV: the sire has been verified by DNA

DV: the dam has been verified by DNA

#: DNA verification has not been conducted

E: DNA verification has identified that the sire and/or

dam may possibly be incorrect, but this cannot be confirmed conclusively.

Breeding Better Business

As part of New Zealand's largest Livestock network, our team of Genetics Specialists have the best advice, more contacts and greater reach.

If you're looking for a planned approach to success, give us a call today.

CAM HEGGIE Genetics Representative 027 501 8182

DEAN EVANS Livestock Manager 027 243 1092

SAM WRIGHT Livestock Representative 027 443 0905

www.pggwrightson.co.nz/livestock

VAUGHN LARSEN Livestock Representative 027 801 4599

ROD SANDS Livestock Representative 027 431 4043

BRUCE DUNBAR Livestock Representative 027 595 6473

fb.com/pgwlivestock

CRAIG KNIGHT Livestock Representative 027 590 1331

JOHN MCKONE Auctioneer 027 229 9375

KELVIN SADLER Livestock Representative 027 430 2029

instagram.com/pgwlivestock

BULL INSURANCE? Yes, we can help. Scan to find out more.

CONDITIONS OF SALE

The sale will be conducted in accordance with the Conditions of Sale as set down by the New Zealand Stock and Station Agents Association: a copy of which will be exhibited at the sale.

Each lot will be the property and responsibility of the purchaser at the fall of the hammer.

PURCHASING REBATE:

All intending purchases are required to register at the sales office prior to the sale.

A purchasing rebate of 6% will then be paid to non participating livestock companies and recognised independent livestock agents with approve credit facilities introducing and/or accompanying buyers to the sale.

Arrangements must be made with the auctioneer at least 4 HOURS PRIOR TO SALE AND SETTLEMENT MADE ON THE BUYERS BEHALF WITHIN 14 DAYS

THERE IS NO EXCEPTIONS TO THIS RULE!

DELIVERY:

The month following the sale. Bulls may be held by special arrangement. The vendors will pay the cartage.

INSURANCE:

We recommend you insure your bulls, an insurance agent will be available on the day.

INSTRUCTIONS:

Buyers are expected to register before the sale. Purchasers are to leave full instructions using the delivery sheet attached at the back of the catalogue.

GST:

All lots are sold exclusive of GST.

DISCLAIMER:

Although all care has been taken to ensure the accuracy of the information contained in this catalogue, no responsibility is accepted for any error or omission that might be contained herein.

HEALTH AND SAFETY:

Every effort will be taken by the vendors, auctioneers, their staff and assistants, both on the day of the sale as well as any visits to inspect, to insure the safety of intending buyers and visitors.

We wish however to advise that while this sale is run under normal management conditions, certain dangers exist in relation to livestock and their environment. Visitors should take care to ensure their personal safety.

STUD TRANSFERS:

Any bull sold requiring a stud transfer for use in a registered herd, be it semen or standing of the bull physically, will be at a minimum price of \$10,000 for a yearling bull. The purchaser or agent must state at the fall of the hammer and on the buyer instruction slip if a transfer is required.

Any animals purchased by Angus NZ members requiring a transfer; the transfer fee charged by Angus NZ will be charged to the Angus NZ purchaser.

ANIMAL HEALTH:

All TWIN OAKS bulls sold are:

- Lepto, Covexin 10 and BVD Vaccinated
- BVD blood tested clear
- Semen quality tested
- TB status C10 Herd
- All bulls sold at auction are free of known genetic defects

ALL Twin Oaks Sale bulls have genomically enhanced EBVs and are SIRE AND DAM verified.

Understanding the TransTasman Angus Cattle Evaluation (TACE)

What is the TransTasman Angus Cattle Evaluation?

The TransTasman Angus Cattle Evaluation is the genetic evaluation program adopted by Angus Australia for Angus and Angus influenced beef cattle. The TransTasman Angus Cattle Evaluation uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (e.g. weight, carcase, fertility).

The TransTasman Angus Cattle Evaluation is an international genetic evaluation and includes pedigree, performance and genomic information from the Angus Australia and Angus New Zealand databases, along with selected information from the American and Canadian Angus Associations.

The TransTasman Angus Cattle Evaluation utilises a range of genetic evaluation software, including the internationally recognised BLUPF90 family of programs, and BREEDPLAN® beef genetic evaluation analytical software, as developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England, and Meat and Livestock Australia Limited (MLA).

What is an EBV?

An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

EBVs are expressed as the difference between an individual animal's genetics and a historical genetic level (i.e. group of animals) within the TACE genetic evaluation, and are reported in the units in which the measurements are taken.

Using EBVs to Compare the Genetics of Two Animals

TACE EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (e.g. they are joined to the same animal/s).

For example, a bull with a 200 Day Growth EBV of +60 would be expected to produce progeny that are, on average, 10 kg heavier at 200 days of age than a bull with a 200 Day Growth EBV of +40 kg (i.e. 20

kg difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Or similarly, a bull with an IMF EBV of +3.0 would be expected to produce progeny with on average, 1% more intramuscular fat in a 400 kg carcase than a bull with a IMF EBV of +1.0 (i.e. 2% difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Using EBVs to Benchmark an Animal's Genetics with the Breed

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus or Angus infused animals recorded with Angus Australia.

To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to the EBV reference tables, which provide:

- the breed average EBV
- the percentile bands table

The current breed average EBV is listed on the bottom of each page in this publication, while the current EBV reference tables are included at the end of these introductory notes.

For easy reference, the percentile band in which an animal's EBV ranks is also published in association with the EBV.

Considering Accuracy

An accuracy value is published with each EBV, and is usually displayed as a percentage value immediately below the EBV.

The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

EBVs with accuracy values below 50% should be considered as preliminary or of low accuracy, 50-74% as of medium accuracy, 75-90% of medium to high accuracy, and 90% or greater as high accuracy.

Description of TACE EBVs

EBVs are calculated for a range of traits within TACE, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this publication is provided on the following page.

UNDERSTANDING ESTIMATED BREEDING VALUES (EBVS)

			Higher EBVs indicate fewer
CEDir	%	Genetic differences in the ability of a sire's calves to be born unassisted from 2 year old heifers.	calving difficulties in 2 year old heifers.
CEDtrs	%	Genetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age.	Higher EBVs indicate fewer calving difficulties in 2 year old heifers.
GL	days	Genetic differences between animals in the length of time from the date of conception to the birth of the calf.	Lower EBVs indicate shorter gestation length.
BW	kg	Genetic differences between animals in calf weight at birth.	Lower EBVs indicate lighter birth weight.
200 Day	kg	Genetic differences between animals in live weight at 200 days of age due to genetics for growth.	Higher EBVs indicate heavier live weight.
400 Day	kg	Genetic differences between animals in live weight at 400 days of age.	Higher EBVs indicate heavier live weight.
600 Day	kg	Genetic differences between animals in live weight at 600 days of age.	Higher EBVs indicate heavier live weight.
мсw	kg	Genetic differences between animals in live weight of cows at 5 years of age.	Higher EBVs indicate heavier mature weight.
Milk	kg	Genetic differences between animals in live weight at 200 days of age due to the maternal contribution of its dam.	Higher EBVs indicate heavier live weight.
DtC	days	Genetic differences between animals in the time from the start of the joining period (i.e. when the female is introduced to a bull) until subsequent calving.	Lower EBVs indicate shorter time to calving.
SS	cm	Genetic differences between animals in scrotal circumference at 400 days of age.	Higher EBVs indicate larger scrotal circumference.
сwт	kg	Genetic differences between animals in hot standard carcase weight at 750 days of age.	Higher EBVs indicate heavier carcase weight.
ЕМА	cm ²	Genetic differences between animals in eye muscle area at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate larger eye muscle area.
Rib Fat	mm	Genetic differences between animals in fat depth at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more fat.
P8 Fat	mm	Genetic differences between animals in fat depth at the P8 rump site in a 400 kg carcase.	Higher EBVs indicate more fat.
RBY	%	Genetic differences between animals in boned out saleable meat from a 400 kg carcase.	Higher EBVs indicate higher yield.
IMF	%	Genetic differences between animals in intramuscular fat (marbling) at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more intramuscular fat.
NFI-F	kg/day	Genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a feedlot finishing phase.	Lower EBVs indicate more feed efficiency.
Doc	%	Genetic differences between animals in temperament.	Higher EBVs indicate better temperament.
Claw Set	score	Genetic differences in claw set structure (shape and evenness of claws).	Lower EBVs indicate a lower score.
Foot Angle	score	Genetic differences in foot angle (strength of pastern, depth of heel).	Lower EBVs indicate a lower score.
Leg Angle	score	Genetic differences in rear leg structure when viewed from the side (angle at front of the hock).	Lower EBVs indicate a lower score.
\$A	\$	Genetic differences between animals in net profitability per cow joined in a typical commercial self replacing herd using Angus bulls. This selection index is not specific to a particular market end-point, but identifies animals that will improve overall net profitability in the majority of commercial, self replacing, grass and grain finishing beef production systems.	Higher selection indexes indicate greater profitability.
\$PRO	\$	Genetic differences between animals in net profitability per cow joined in a commercial self replacing herd based in New Zealand that targets the production of grass finished steers for the AngusPure programme. Steers are assumed marketed at approximately 530 kg live weight (290 kg carcase weight with 10 mm P8 fat depth) at 20 months of age, with a significant premium for steers that exhibit superior marbling.	Higher selection indexes indicate eater profitability.
	CEDtrs GL BW 200 Day 400 Day 600 Day Milk 0 CW 600 Day 600 Day	CEDtrs%GL(A)BW(A)CO Day(A)GO Day(A)MIK(A)MIK(A)DtC(A)SS(A)CWT(A)CWT(A)CWT(A)RBY(A)RBY(A)NFI-F(A)COC(A)SASSAS	CEDitsNoGenetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age.GLdaysGenetic differences between animals in the length of time from the date of conception to the bith of the calf.BWkgGenetic differences between animals in live weight at 200 days of age due to genetics for growth.400 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in live weight at 600 days of age.600 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in live weight at 200 days of age.600 DaykgGenetic differences between animals in scrotal circumference at 400 days of age.600 DaykgGenetic differences between animals in for dapt at the 12/13th rib site in a 400 kg carcase.600 DaykgGenetic differences between animals in fat depth at the P3 rump site in a 400 kg carcase.600 Daykg/dayGenetic differences between animals in fat depth at the 12/13th rib site in a 400 kg carcase.600 Daykg/dayGenetic differences between animals in fat depth at the P3 rump site in a 400 kg carcase.600 Daykg/dayGenetic differences between animals in fat depth at the P3 rump site in a 400 kg c

AngusPRO Index (API)

The research selection indexes have been developed for industry review and feedback prior to potential implementation into the TransTasman Angus Cattle Evaluation.

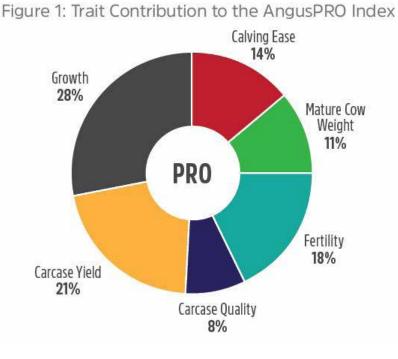
Selection Index Summary

- New Zealand production system
- · Self replacing herd
- · Daughters are retained for breeding
- · Steer progeny are finished on pasture for the AngusPure programme
- · Steer progeny slaughtered at a carcase weight of 290kg at 20 months of age
- · Significant premium for steers that exhibit superior marbling

The AngusPRO index (PRO) estimates the genetic differences between animals in net profitability per cow joined in a commercial self replacing herd based in New Zealand that targets the production of grass finished steers for the AngusPure programme.

Daughters are retained for breeding and therefore female traits are of importance.

Steers are assumed marketed at approximately 530 kg live weight (290 kg carcase weight with 10 mm P8 fat depth) at 20 months of age, with a significant premium for steers that exhibit superior marbling.


TRAIT CONTRIBUTIONS

Twin Oa

NGUS STUD - TE AK

Figure 1 shows the traits that are considered in the PRO index, and how much they contribute to the overall balance of the selection index.

The larger the segment, the greater the impact on the selection index.

12

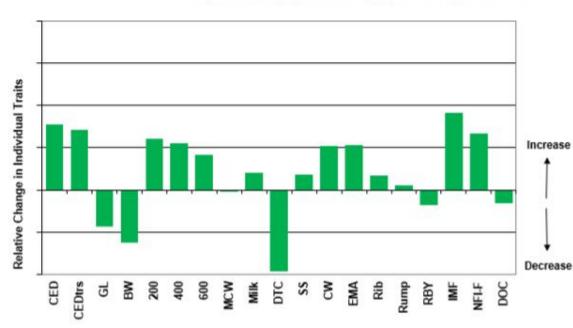

SELECTION ADVANTAGE

Figure 2 shows the selection advantage if animals are selected using the PRO index.

The selection advantage is calculated by ranking well used sires within the Angus breed on the PRO index, and comparing the average EBVs of the sires in the highest 10% with the average EBVs of all sires from which they were selected. For example, the sires ranked in the highest 10% based on the PRO index had 9 kg higher 400 Day Weight EBVs and 1.2 kg lower Birth Weight EBVs than the average EBVs of the sires from which they were selected.

The selection advantage is indicative of the long term direction and relativity of response that will occur in individual traits if selection is based on the PRO index. The actual response that is observed will vary depending on the features of the individual breeding program.

A feature of the PRO index is a selection advantage of close to 0 for mature cow weight, meaning that selection on this index will maintain mature cow weight, while still increasing growth to 200, 400 & 600 days of age.

Figure 2 - Selection Advantage for the AngusPRO Index

CED	+5.8	%
CEDtrs	+4.5	%
GL	-1.2	days
BW	-1.2	kg
ww	+6	kg
YW	+9	kg
FW	+9	kg
MCW	-0	kg
Milk	+1	kg
DTC	-2.6	days
55	+0.2	cm
CW	+8	kg
EMA	+1.6	cm ²
Rib	+0.3	mm
Rump	+0.1	mm
RBY	-0.2	%
IMF	+1.2	%
NFI-F	+0.27	kg/day
DOC	-2	96

AonAgri

AonAgri is New Zealand's leading rural insurance broker, and proudly supports farming communities around the country. Having worked with bull farmers, buyers and industry members for a number of years, our dedicated teams understand the value and importance of making sure your stock and farm assets are properly covered - right from sale.

See you at the Twin Oaks bull sale on 26 September 2024. For more information, speak to Tanya Pretorius at the booking table.

Say **hello** to **your** local AonAgri team today to find the right cover for your farm.

Tanya Pretorius

tanya.pretorius@aon.com +64 27 405 5095 aon.co.nz

ANGUSPURE PARTNER

AngusPure NZ has teamed up with 88 Angus studs who share in our vision - to focus on the end consumer. This stud is proud to be named as one of them, and by using the finest genetics and implementing best management practice they can help you produce more premium quality Angus beef.

Only our AngusPure Partner studs display these devices in their sale catalogues. They indicate bulls endorsed by AngusPure NZ.

AngusPure NZ continues to endorse bulls for sale that are either at or above +\$125 for the AngusPure index (API) and at or above \$115 for the AngusPRO index (PRO). These indexes give commercial farmers confidence that by using these selection tools, bulls are most likely to leave progeny with superior carcase quality. At the same time they achieve desirable outcomes for self replacing herds, as the AngusPure & AngusPRO indexes still reward cattle with strong maternal attributes like calving ease, scrotal and growth, along with carcase weight.

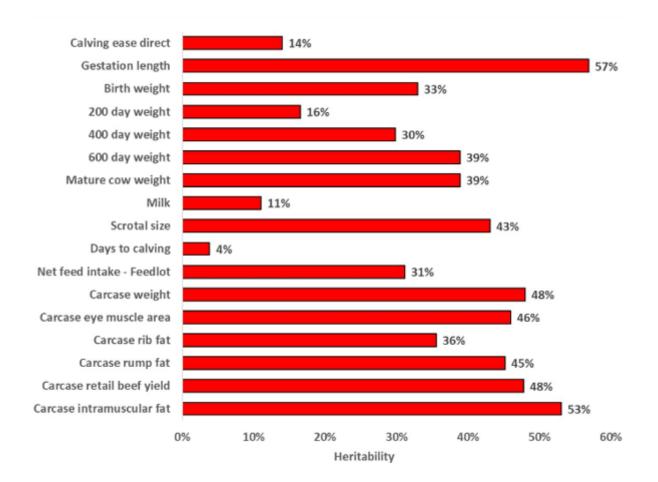
To qualify, bulls will be => +\$125 for AngusPure index OR => +\$115 for AngusPRO index

A+ EXTRA ANGUSPURE ENDORSEMENT FOR MARBLING

In addition to the **'A'**, and to assist bull buyers who wish to select for more marbling AngusPure are rewarding those animals that are either at or above +\$145 for the AngusPure index and at or above \$135 for the AngusPRO index. In addition to this they must have an IMF EBV (for marbling) equal to or greater than +2.2. These bulls will be awarded an **'A+'** endorsement. Marbling is one of the very highest eating quality attributes and is necessary in order to meet some of the highest premium requirements for the export program, AngusPure Special Reserve.

To qualify, bulls will be => +\$145 for AngusPure index OR => +\$135 for AngusPRO index, and in addition all bulls must be => +2.2 for IMF EBV

AngusPure NZ recognises the need to lift the amount of marbling in our New Zealand cow genetics, in order to fill the requirements of consumers going forward. Marbling has two critical components; genetics and feeding. Feeding on a rising plane of nutrition is vital but without the genetics these attributes will not be able to express themselves.



HERITABILITIES OF TRAITS IN ANGUS GROUP TACE (TRANSTASMAN CATTLE EVALUATION)

The degree to which genetic differences influence performance varies from trait to trait. This is explained by differences in the "heritability" of the traits.

Growth and carcase traits tend to have moderate to high heritabilities (i.e. 20 to 60%), whilst maternal traits have low heritabilities (10% or lower).

Angus Group TACE takes into account the different degrees of heritability of various traits, and the known genetic relationships between the traits.

TARGETED BREEDING

BULL FERTILITY SOUNDNESS CHECK:

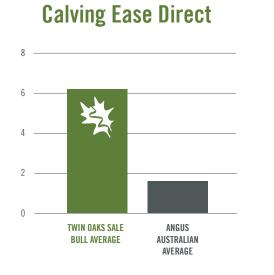
On the 21st of August, 2024 all Twin Oaks bulls on offer were subject to a crush side examination to ensure no anatomical abnormalities were present on the reproductive organs.

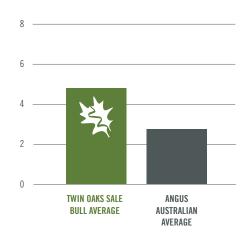
- The Testicles were inspected and palpated to ensure the presence of two symmetrical turgid testicles with no lumps or deformities.
- Protrusion of the penis was obtained through electro stimulation, of which the Penis and prepuce was inspected for any frenulum's, signs of disease (IBR or papilloma's), damage or deviations.
- A semen sample was collected and evaluated for progressive motility, morphology and density. Any bulls in question were assessed under oil emersion magnification through Eosin /Nigrosin stains.

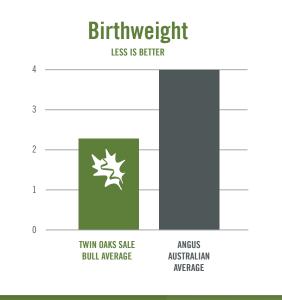
A pass indicates no abnormalities have been detected which would impact the fertility of the bull prior to the sale.

Reuben Brown, BVSc Targeted Breeding

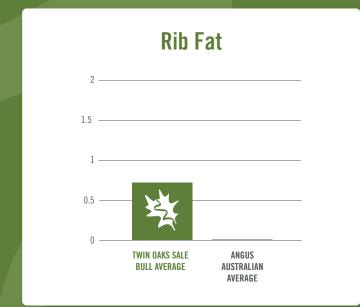
CONTACT US

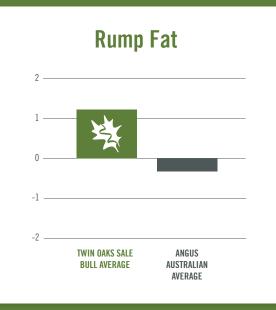

REUBEN BROWN 0272538216 REUBEN@TARGETEDBREEDING.CO.NZ JOHANNA SCOTT 021917024 JO@TARGETEDBREEDING.CO.NZ

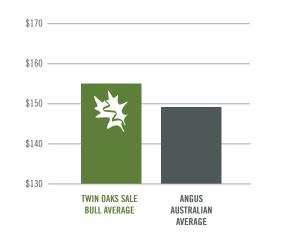

417 Ardgowan Road, Oamaru

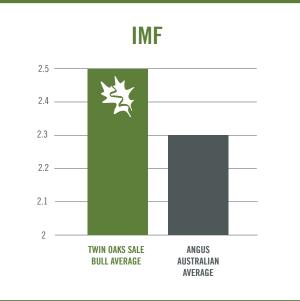


twin oaks sale team vs angus australia average CALVING EASE TRAITS


Calving Ease Daughters






twin oaks sale team vs angus australia average **CARCASE TRAITS**

Angus Pro Index

Tables
ference
Be
r 2024
ptember
Se
Evaluation -
Cattle
Angus (
InsTasman
Tran

										Ш	REED	AVEF	BREED AVERAGE EBVs	EBVs										
	Calvin	Calving Ease	Birth	ťh			Growth			Ferti	lity			Carcase	ase			Other	er	0	Structure		Selection Indexes	Indexes
	CEDir	CEDir CEDtrs GL	GL	BW	200	BW 200 400 600 MCW	600	MCW	Milk	SS	DTC	CWT	Milk SS DTC CWT EMA RIB P8 RBY IMF NFLF DOC Claw Angle Leg \$A	RIB	P8	RBY	IMF	NFI-F	DOC	Claw	Angle	Leg		\$A-L
Brd Avg +1.8 +2.7 -4.4 +4.	+1.8	+2.7	-4.4	0	+51	+51 +92 +119	+119	+102	+17	+2.2	-4.7	+67	+17 +2.2 -4.7 +67 +6.4 +0.0 -0.3 +0.5 +2.3 +0.22 +20 +0.84	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97 +1.02	+1.02	+200	+344

* Breed average represents the average EBV of all 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the September 2024 TransTasman Angus Cattle Evaluation .

										PE	PERCENTILE	TILE B	BANDS TABLE	TABLE	U.									
	Calving	Calving Ease	Bi	Birth			Growth			Fertility	lity			Carcase	ISE			Other	r	St	Structure		Selection Indexes	ndexes
% Band	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	ртс	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Claw	Angle	Leg	\$A	\$A-L
	Less Calving Difficulty	Less Calving Difficulty	Shorter Gestation Length	Lighter Birth Weight	Heavier Live Weight	Heavier Live Weight	Heavier Live Weight	Heavier Mature Weight	Heavier Live Weight	Larger Scrotal Size	Shorter Calving Usior	Heavier Carcase Weight	Larger EMA	More Fat	More Fat	Higher Yield	More IMF Greater	Feed Efficiency	More Docile	Score Lower	Score Lower	Score Lower	Greater Profitability	Greater Profitability
1%	+10.1	+9.9	-10.4	-0.4	+71	+124	+164	+167	+29	+5.1	-8.9	+101	+14.9	+4.5	+5.5	+2.1	+6.1	-0.65	+45 +	+0.42 +	+ 09.0+	+0.72	+278	+455
5%	+8.3	+8.3	-8.6	+1.0	+65	+114	+150	+145	+25	+4.1	-7.5	06+	+12.2	+3.1	+3.6	+1.6	+4.9	-0.38	+37 +	+0.54 +	+ 0.70 +	+0.82	+257	+424
10%	+7.2	+7.3	-7.6	+1.7	+61	+109	+142	+135	+23	+3.6	-6.9	+85	+10.8	+2.3	+2.7	+1.3	+4.3	-0.24	+33 +	+ 09.0+	+0.76 +	+0.86	+245	+408
15%	+6.4	+6.6	-7.0	+2.2	+59	+105	+137	+128	+22	+3.3	-6.4	+81	+9.9	+1.8	+2.0	+1.2	+3.9	-0.15 -	+30 +	+0.64 +	+0.80 +	+0.90	+237	+397
20%	+5.7	+6.0	-6.5	+2.5	+58	+103	+134	+123	+21	+3.1	-6.1	+79	+9.2	+1.4	+1.5	+1.0	+3.6	-0.08	+28 +	+0.68 +	+0.82 +	+0.92	+231	+388
25%	+5.1	+5.4	-6.1	+2.8	+56	+101	+131	+118	+20	+2.9	-5.8	+76	+8.6	+1.1	+1.2	-0.9	+3.3	-0.02	+27 +	+0.72 +	+0.86 +	+0.94	+225	+380
30%	+4.5	+4.9	-5.7	+3.1	+55	+99	+128	+114	+19	+2.7	-5.5	+74	+8.1	+0.9	+0.8	+0.8	+3.0 +	+0.03	+25 +	+0.74 +	+0.88 +	+0.96	+220	+373
35%	+4.0	+4.5	-5.4	+3.3	+54	+97	+126	+111	+19	+2.6	-5.3	+73	+7.6	+0.6	+0.5	+0.7	+2.8 +	- 80.0+	+24 +	+0.76 +	+ 06.0+	+0.98	+215	+367
40%	+3.4	+4.0	-5.0	+3.6	+53	+95	+123	+108	+18	+2.4	-5.1	+71	+7.2	+0.4	+0.2	+0.7	+2.6 +	+0.12 -	+23 +	+0.78 +	+0.92 +	+0.98	+211	+361
45%	+2.9	+3.6	-4.7	+3.8	+52	+93	+121	+104	+18	+2.3	-4.9	+69	+6.7	+0.2	-0.1	+0.6	+2.4 +	+0.17 -	+21 +	+0.80 +	+0.94	+1.00	+207	+355
50%	+2.4	+3.1	-4.4	+4.0	+51	+92	+119	+101	+17	+2.1	-4.6	+68	+6.3	+0.0	-0.3	+0.5	+2.2 +	+0.21 -	+20 +	+0.84 +	+ 96.0+	+1.02	+203	+349
55%	+1.8	+2.7	-4.1	+4.2	+50	+90	+116	+98	+16	+2.0	-4.5	+66	+5.9	-0.2	-0.6	+0.4	+2.0 +	+0.26 -	+19 +	+0.86 +	+0.98 +	+1.04	+198	+342
%09	+1.2	+2.2	-3.8	+4.4	+49	+89	+114	+95	+16	+1.9	-4.2	+64	+5.5	-0.5	-0.9	+0.3	+1.8 +	+0.30	+18 +	+0.88 +	+1.00 +	+1.06	+194	+336
65%	+0.6	+1.7	-3.5	+4.6	+48	+87	+112	+92	+15	+1.7	-4.0	+62	+5.1	-0.7	-1.2	+0.2	+1.7 +	+0.35 -	+17 +	+ 06.0+	+1.02 +	+1.06	+189	+329
%02	-0.1	+1.1	-3.1	+4.9	+47	+85	+109	+89	+14	+1.6	-3.8	+61	+4.7	-0.9	-1.5	+0.2	+1.5 +	-0.40	+15 +	+0.94 +	+1.04 +	+1.08	+184	+322
75%	-0.9	+0.5	-2.8	+5.1	+45	+83	+107	+85	+14	+1.4	-3.6	+59	+4.2	-1.2	-1.8	+0.1	+1.3 +	+0.45 -	+14 +	+ 96.0+	+1.08 +	+1.10	+178	+313
80%	-1.8	-0.2	-2.4	+5.4	+44	+81	+104	+81	+13	+1.3	-3.3	+56	+3.7	-1.4	-2.2	-0.1	+1.1	+0.52 -	+13 +	+1.00 +	+1.10 +	+1.12	+171	+304
85%	-2.9	-1.2	-1.9	+5.8	+42	+78	+100	+76	+12	+1.1	-2.9	+54	+3.0	-1.8	-2.6	-0.2	+0.8	+0.59 -	+11+	+1.04 +	+1.14 +	+1.16	+163	+291
%06	-4.5	-2.4	-1.2	+6.2	+40	+75	+95	+70	÷	+0.8	-2.5	+50	+2.2	-2.2	-3.2	-0.4	+0.5 +	+0.69	+ 6+	+1.08 +	+1.18 +	H.18	+152	+276
95%	-7.0	-4.4	-0.2	+6.9	+37	+70	+88	+60	6+	+0.4	-1.7	+45	+0.9	-2.9	-4.2	-0.7	+0.0+	+0.85	+2+	+1.16 +	+1.24 +	H1.24	+136	+250
%66	-12.5	-8.8	+1.8	+8.4	+30	+60	+74	+40	+5	-0.5	-0.2	+34	-1.6	-4.3	-6.0	-1.2	-0.9	+1.14	+	+1.30 +	+1.38 +	+1.32	+106	+202
	More Calving Difficulty	More Calving Difficulty	Lenger Gestation Length	Heavier Birth Weight	Lighter Live Weight Lighter	Lighter Live Weight	Lighter Live Weight	Lighter Mature Weight	Lighter Live Weight	Smaller Scrotal Size	Longer Calving Line to	Lighter Carcase Weight	Smaller EMA	Less Less	Less Fat	Yield Yield	Lower IMF Less	Feed Efficiency	Less Docile	Higher Score	Higher	Higher Score	Lower Profitability	Lower Profitability
* The percentile bands represent the distribution of EBVs across the Angus Cattle Evaluation .	rcentile attle Ev	bands re aluation	eprese	nt the di	stributic	in of EE	3Vs acro		2022 d	rop Au₅	tralian /	Angus a	Ind Ang	us-influt	enced s	eedstoc	ck anim	als anal	lysed in	the Se	ptembe	ır 2024 T	2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the September 2024 TransTasman	lan

Wishing Roger, Susan and family a successful sale.

Your **Angus Source and Trace birth tag** requirements conveniently matched to a **TSU** (tissue sampling unit).

Order now from

The tag experts 0800 248 247 • 0800 AG TAGS Phone 06 323 0861 • tags@pbbnz.com

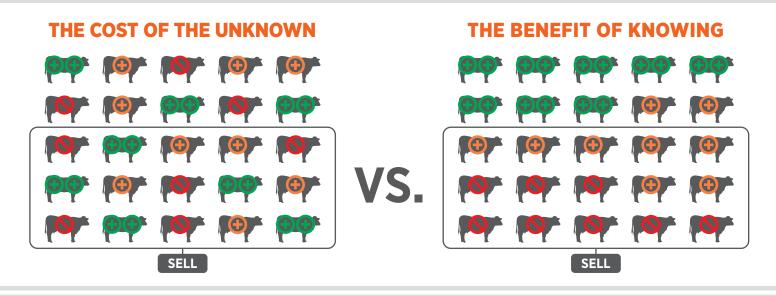
188

Allflex.co.nz

YOU NEED THE BEST. TO LOOK AFTER THE BEST.

When it comes to the transport of stud livestock you can't go past Downlands Deer and Studstock.

During the past 30 years, we have pioneered the way in studstock transportation with purpose built trucks, calm expert livestock handlers, efficient nationwide transport routing and now with visual tracking from pick up to delivery.


Talk to Downlands Deer and Studstock today to ensure your livestock arrives in the best condition possible.

0800 163 013 office@downlandsdeer.co.nz www.downlandsdeer.co.nz

YOU'LL NEVER LOOK AT YOUR HEIFERS THE SAME WAY AGAIN!

An innovative, multi-breed genomic test providing **predictions for commercial females**.

Predictions provide genetic insights to help make better replacement selection and breeding decisions.

FEATURES	BENEFITS
3 Economic Indexes	Ranks females from highest potential return to lowest using GEPD and economic assumptions specific to New Zealand cattle producers.
18 GEPDs	Informs indexes and enables specific selection, breeding and marketing decisions that can be tailored to your herd.
Percent Ranks	Benchmarks females against other commercial animals in the evaluation. Easily identify strengths and weaknesses of cow herd.
Parentage	Sire parentage contributes to the accuracy of GEPD, assess sire performance and prevent inbreeding.
Breed Composition	Indicates maternal heterosis to inform selection and breeding decisions.

For more information contact Zoetis Beef Specialist – Amy Hoogenboom 021 199 0989 | amy.hoogenboom@zoetis.com Lot 1

TWIN OAKS U061^{PV} (HBR)

FTW23U061

Mating Type: Al

DOB: 24/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV}

TWIN OAKS P073^{PV} DAM: FTW21S156 TWIN OAKS PANSY S156^{PV}

TWIN OAKS CAROL N037PV

TWIN OAKS PANSY K133^{sv}

Selection
Index
\$PRO
\$120
78

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Standauman Angun Cattin Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.7	+2.1	-6.0	+0.7	+44	+81	+107	+80	+18	+1.2	-1.4	+67	+7.6	+1.6	+1.7	+0.4	+2.0	+36	+0.52	+0.74	+0.80	+0.98
Acc	63%	53%	82%	81%	82%	79%	80%	77%	72%	77%	37%	67%	67%	66%	67%	57%	72%	73%	58%	66%	66%	63%
Perc	2	61	26	4	81	80	76	81	41	81	96	51	35	18	18	53	55	6	80	29	15	34

Trait Observed: GL,CE,BWT,200WT,Genomics

SIRE: FTW21S089 TWIN OAKS S089PV

Heifers Calf.

Lot 2 TWIN OAKS U021^{PV} (HBR)

FTW23U021

Mating Type: Al

DOB: 20/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH NECTAR N334^{PV} SIRE: NMMR53 MILLAH MURRAH RECTOR R53^{PV} MILLAH MURRAH BRENDA N72^{PV} TWIN OAKS P215^{PV} **DAM: NZE20149120R334 TWIN OAKS UNVEIL R334^{PV}** TWIN OAKS UNVEIL N013^{PV}

Selection
Index
\$PRO
\$167
33

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.5	+0.7	-5.0	+3.6	+42	+74	+98	+62	+18	+2.1	-5.1	+53	+11.9	+1.8	+1.6	+1.0	+2.5	+19	+0.18	+0.64	+0.56	+1.08
Acc	64%	53%	83%	81%	82%	80%	80%	77%	73%	78%	39%	69%	68%	68%	69%	60%	73%	76%	59%	63%	63%	60%
Perc	40	74	40	40	86	92	88	94	44	50	38	87	6	15	19	20	41	54	46	14	1	66

Trait Observed: GL,CE,BWT,200WT,Genomics

		Т	'rans'	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growtł	ı		Fert	tility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U003PV (HBR) Lot 3

FTW23U003

Mating Type: Al

DOB: 14/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH NECTAR N334PV SIRE: NMMR53 MILLAH MURRAH RECTOR R53PV MILLAH MURRAH BRENDA N72PV

TE MANIA 11 465^{sv} DAM: NZE20149116M273 TWIN OAKS MOANA M273PV TWIN OAKS MOANA J028sv

Selection
Index
\$PRO
\$161
39

																						39
TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		G	ROV	/TH		FERT	ILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Gattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.0	+0.7	-9.1	+3.0	+37	+66	+89	+77	+9	+1.5	-5.1	+65	+6.9	+3.3	+5.1	-0.8	+4.5	+31	+0.68	+0.52	+0.62	+0.74
Acc	67%	57%	83%	83%	84%	82%	82%	79%	75%	80%	42%	71%	71%	70%	72%	63%	75%	78%	62%	61%	61%	60%
Perc	18	74	4	28	95	98	95	84	96	72	38	58	43	4	2	96	8	14	90	4	2	2

Trait Observed: GL,CE,200WT,Genomics

TWIN OAKS U139^{₽V} (HBR) Lot 4

FTW23U139

Mating Type: Al

DOB: 31/08/2023

AMFU,CAFU,DDFU,NHFU

RENNYLEA L519PV SIRE: BHRR102 DUNOON RECHARGE R102PV DUNOON ELINE M459sv

MILLAH MURRAH PARATROOPER P15PV DAM: FTW21S184 TWIN OAKS BRONNIE S184PV TWIN OAKS K060sv

Selection Index
\$PRO
\$215
4

September 2024 TransTasman Angus Cattle Evaluation																					
CALVING EASE GROWTH									FERTILITY				CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
CEDir CEDtrs GL BW 200 400 600 MCW Milk							SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg		
+1.7	+4.0	-2.4	+3.9	+54	+102	+108	+99	+10	+2.1	-7.3	+69	+8.3	-0.6	+1.4	+0.7	+2.4	+24	+0.33	+0.62	+0.78	+0.70
67%	55%	82%	81%	83%	80%	80%	77%	73%	78%	41%	68%	68%	67%	68%	59%	72%	77%	59%	69%	69%	67%
56	40	80	48	33	22	72	54	93	50	7	46	28	63	22	35	44	35	63	11	12	1
	CEDir +1.7 67%	CEDir CEDtrs +1.7 +4.0 67% 55%	CEDir CEDtrs GL +1.7 +4.0 -2.4 67% 55% 82%	CEDir CEDtrs GL BW +1.7 +4.0 -2.4 +3.9 67% 55% 82% 81%	CEDir CEDtrs GL BW 200 +1.7 +4.0 -2.4 +3.9 +54 67% 55% 82% 81% 83%	CEDir CEDtrs GL BW 200 400 +1.7 +4.0 -2.4 +3.9 +54 +102 67% 55% 82% 81% 83% 80%	CEDir CEDtrs GL BW 200 400 600 +1.7 +4.0 -2.4 +3.9 +54 +102 +108 67% 55% 82% 81% 83% 80% 80%	CALVING EASE BW 200 400 600 MCW CEDir CEDtrs GL BW 200 400 600 MCW +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 67% 55% 82% 81% 83% 80% 80% 77%	CEDir CEDtrs GL BW 200 400 600 MCW Milk +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +100 67% 55% 82% 81% 83% 80% 80% 77% 73%	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 67% 55% 82% 81% 83% 80% 80% 77% 73% 78%	CEDir GL BW 200 400 600 MCW Milk SS DtC +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 67% 55% 82% 81% 83% 80% 80% 77% 73% 78% 41%	CALVING EASE GU 400 600 MCW Milk SS DtC CWT CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68%	CALVING EASE GROWTH FERTILITY CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68%	CALVING EASE GROWTH FERTILITY CAUT FERTILITY CAUT EMA Rio CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rio +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67%	CALVING EASE GROWTH FERTILITY CARCASE CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68%	CALVING EASE GROWTH FERTILITY CARCASE CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59%	CALVING EASE GROWTH FERTILITY CARCASE CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 +2.4 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59% 72%	CALVING EASE FERTILITY CARCASE OTI CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 +2.4 +24 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59% 72% 77%	CALVING EASE GROWTH FERTILITY CARCASE OTHER CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 +2.4 +2.4 +0.33 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59% 72% 77% 59%	CALVING EASE GROWTH FERTILITY CARCASE OTHER STR CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-1 Claw +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 +2.4 +2.4 +0.33 +0.62 67% 55% 82% 81% 80% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59% 72% 77% 59% 69%	CALVING EASE OTHER GROWTH FERTILITY CARCASE OTHER STRUTTL CEDir GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I Claw Foot +1.7 +4.0 -2.4 +3.9 +54 +102 +108 +99 +10 +2.1 -7.3 +69 +8.3 -0.6 +1.4 +0.7 +2.4 +2.4 +0.33 +0.62 +0.78 67% 55% 82% 81% 83% 80% 77% 73% 78% 41% 68% 68% 67% 68% 59% 72% 77% 59% 69% 69%

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.

	TransTasman Cattle Evaluation September 2024 Breedplan Tables - BREED AVERAGE EBV's																					
		Calvin	g Ease			(Growtł	ı		Fer	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 5 TWIN OAKS U067^{PV} (HBR)

FTW23U067

Mating Type: Al

DOB: 24/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH NECTAR N334^{PV} SIRE: NMMR53 MILLAH MURRAH RECTOR R53^{PV}

MILLAH MURRAH BRENDA N72PV

G A R ASHLAND^{PV} **DAM: NZE20149120R094 TWIN OAKS CREEK R094^{PV}** TWIN OAKS CREEK P176^{PV}

Selection
Index
\$PRO
\$167
33

																						~~
TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	CALVING EASE GROWTH							VTH		FERTILITY				CARC	CASE			ОТ	HER	STR	UCTU	RAL
Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.5	+5.2	-6.7	+3.2	+50	+91	+118	+105	+14	+1.5	-4.0	+60	+7.6	+1.4	+0.6	+0.1	+3.2	+27	+0.15	+1.06	+0.96	+1.00
Acc	67%	57%	83%	82%	83%	81%	81%	78%	74%	79%	41%	69%	69%	69%	70%	61%	74%	77%	62%	65%	65%	63%
Perc	15	27	18	32	54	52	53	44	72	72	65	73	35	20	33	71	26	23	43	87	48	41

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 6 TWIN OAKS U183^{PV} (HBR)

Mating Type: Al

DOB: 05/09/2023

AMFU,CAFU,DDFU,NHFU

FTW23U183

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} G A R MOMENTUM^{PV} DAM: NZE20149118P098 TWIN OAKS PANSY P098^{PV} TWIN OAKS PANSY K157[#]

Selection
Index
\$PRO
\$176
24

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERTILITY				CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.1	+1.8	-3.2	+1.0	+40	+73	+92	+60	+11	+1.7	-4.1	+56	+5.7	+2.8	+3.7	+0.1	+4.2	+11	+1.35	+1.00	+1.10	+1.00
Acc	67%	56%	83%	82%	83%	81%	82%	79%	74%	80%	42%	70%	70%	69%	71%	62%	74%	77%	62%	69%	69%	67%
Perc	17	64	69	5	91	93	93	95	87	65	63	80	58	7	5	71	11	85	99	80	79	41

Trait Observed: GL,CE,BWT,200WT,Genomics

	TransTasman Cattle Evaluation September 2024 Breedplan Tables - BREED AVERAGE EBV's																					
		Calvin	g Ease			(Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U141^{PV} (HBR)

FTW23U141

Mating Type: Al

Lot 7

DOB: 31/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH NECTAR N334PV S

MILLAH MURRAH PARATROOPER P15PV DAM: FTW21S102 TWIN OAKS VALENTINE S102PV TWIN OAKS VALENTINE Q156PV

Selection Index
\$PRO
\$168
32

MILLAN MURRAN NECTAR	11334
SIRE: NMMR53 MILLAH MURRAH RECTOR R	53 ^{PV}
MILLAH MURRAH BRENDA	N72 ^{PV}

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
	C.	ALVING	EASE	Ξ		Ģ	GROV	/TH		FERT	TILITY			CARC	ASE			ОТ	HER	STR	UCTU	JRAL
transfaurnan Angue Cattle Traination	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.3	+3.5	-8.7	+2.9	+43	+80	+105	+87	+15	+1.3	-5.4	+60	+5.3	+0.9	-0.6	+0.7	+3.6	+35	+0.09	+0.92	+0.84	+0.80
Acc	65%	54%	83%	81%	82%	80%	80%	77%	73%	78%	39%	68%	68%	68%	69%	60%	73%	76%	59%	66%	66%	63%
Perc	16	46	5	26	82	82	79	73	63	78	32	72	62	29	54	35	19	8	36	66	21	4

Trait Observed: GL,CE,BWT,200WT,DOC,Genomics

Heifers Calf.

FTW23U071

TWIN OAKS U071PV (HBR) Lot 8

Mating Type: Al DOB: 24/08/2023 AMFU,CAFU,DDFU,NHFU RENNYLEA L519PV TWIN OAKS Q109PV Selection Index SIRE: BHRR102 DUNOON RECHARGE R102PV DAM: FTW21S242 TWIN OAKS PEG S242PV \$PRO DUNOON ELINE M459sv TWIN OAKS PEG K006sv \$148 53 September 2024 TransTasman Angus Cattle Evaluation TACE CALVING EASE GROWTH FERTILITY CARCASE OTHER STRUCTURAL CEDir CEDtrs GL BW 200 400 600 MCW SS DtC CWT EMA P8 RBY IMF DOC Milk Rib NFI-I Claw Foot Leg EBV +4.5 +29 -9.2 +63 +119 +155 +145 +17 -0.9 -0.7 +41 -0.10 +0.66 +0.82 +1.00 +5.2 +15 +4.3 -2.8 +90 -1.1 +2.6 Acc 65% 54% 81% 82% 80% 80% 77% 72% 78% 40% 68% 68% 67% 68% 59% 72% 76% 59% 67% 67% 65% 83%

87

6

Trait Observed: GL,CE,BWT,200WT,Genomics

3

76 8 3 3 6

53

Heifers Calf.

Perc

30

68

4

93 69 63 95

39

3

18

16

18

41

		т	rans	Tasma	an Ca	ttle E	valua	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growtł	ı		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 9 TWIN OAKS U113^{PV} (HBR)

FTW23U113

Mating Type: Al

DOB: 28/08/2023

AMFU,CAFU,DDFU,NHFU

RENNYLEA L519PV

SIRE: BHRR102 DUNOON RECHARGE R102^{PV} DUNOON ELINE M459^{SV} TWIN OAKS P073^{PV} **DAM: FTW21S054 TWIN OAKS ALDA S054^{PV}** TWIN OAKS ALDA M325^{PV}

Selection
Index
\$PRO
\$164
37

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	tion						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ΟΤΙ	HER	STR	UCTU	IRAL
Standauman Angun Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.5	+5.9	-6.3	+4.7	+60	+110	+141	+158	+2	+0.6	-2.7	+84	+1.3	+0.7	+1.4	-0.8	+3.0	+9	+0.47	+0.80	+0.70	+0.90
Acc	65%	54%	82%	81%	82%	80%	80%	77%	72%	78%	40%	68%	67%	67%	68%	59%	72%	76%	59%	68%	68%	66%
Perc	15	21	22	66	15	9	12	2	99	93	88	11	94	33	22	96	30	90	76	41	5	15

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.

Lot 10 TWIN OAKS U095^{PV} (HBR)

FTW23U095

Mating Type: Al

DOB: 26/08/2023

AMFU,CAFU,DDFU,NHFU

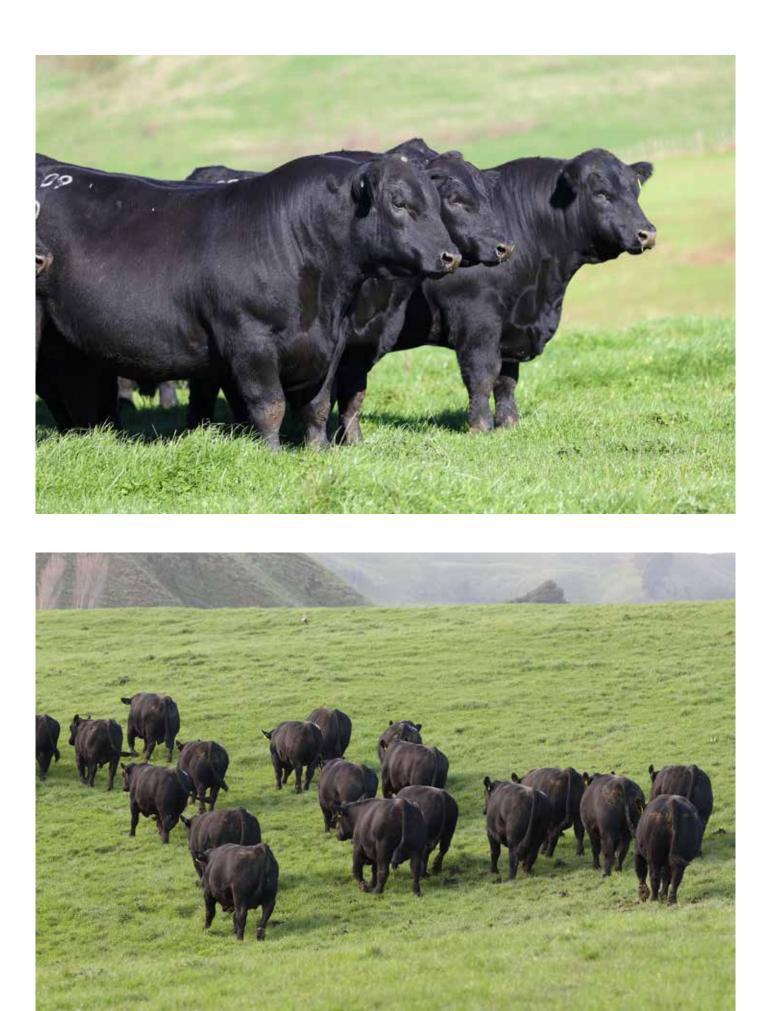
MILLAH MURRAH NECTAR N334^{PV} SIRE: NMMR53 MILLAH MURRAH RECTOR R53^{PV} MILLAH MURRAH BRENDA N72^{PV} MILLAH MURRAH PARATROOPER P15^{PV} DAM: FTW21S080 TWIN OAKS EVEREST S080^{PV} TWIN OAKS EVEREST M354^{PV}

Selection
Index
\$PRO
\$196
11

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		Ģ	BROV	VTH		FERT	TILITY			CARC	CASE			ΟΤΙ	HER	STR	UCTL	JRAL
transfasman Angus Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.5	+5.7	-8.6	+3.1	+51	+96	+131	+93	+27	+3.1	-5.6	+84	+12.6	+3.9	+2.0	+0.6	+2.0	+26	+0.54	+0.58	+0.68	+0.96
Acc	66%	55%	83%	82%	83%	81%	81%	78%	74%	79%	40%	69%	69%	69%	70%	61%	74%	77%	61%	65%	65%	63%
Perc	15	22	5	30	49	37	25	64	3	19	28	12	4	2	15	41	55	26	82	8	4	28

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.



		т	rans	Tasma	ın Cat	ttle E	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 11 TWIN OAKS U035^{PV} (HBR)

FTW23U035

Mating Type: Al

.

DOB: 21/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GT RITA K68^{sv}

MUSGRAVE BIG SKY^{PV} DAM: NZE20149117N057 TWIN OAKS BREEZE N057^{PV} TWIN OAKS BREEZE L48[#]

Selection
Index
\$PRO
\$149
53

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
	C	ALVING	6 EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	RAL
Sandasnan Angue Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.9	+7.0	-3.0	+1.1	+45	+86	+105	+71	+11	+4.2	-1.7	+60	+7.4	-0.1	+0.7	+0.3	+2.6	+12	+0.84	+1.00	+0.72	+0.96
Acc	67%	56%	83%	82%	83%	81%	82%	79%	74%	79%	42%	69%	69%	69%	70%	62%	73%	77%	61%	70%	70%	67%
Perc	12	12	72	6	77	67	78	89	87	5	95	72	37	51	32	59	39	81	95	80	6	28

Trait Observed: GL,CE,BWT,200WT,Genomics

		т	'rans1	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growtł	ו		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 13 TWIN OAKS U059^{PV} (HBR)

FTW23U059

Mating Type: Al

DOB: 24/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S089 TWIN OAKS S089PV

TWIN OAKS CAROL N037PV

BEN NEVIS METAMORPHIC M51^{SV} DAM: NZE20149119Q158 TWIN OAKS MINT Q158^{PV} TWIN OAKS MINT J074[#]

Selection
Index
\$PRO
\$167
34

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		Ģ	ROV	√ТН		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
transfaunae Angue Cattle Instaation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.4	+5.0	-2.9	+2.9	+45	+81	+102	+61	+19	+1.6	-2.4	+56	+9.1	+2.4	+3.4	+0.0	+4.8	+40	+1.02	+0.64	+0.88	+0.94
Acc	64%	55%	83%	81%	82%	80%	80%	77%	73%	77%	39%	68%	67%	67%	68%	58%	72%	74%	59%	64%	64%	61%
Perc	40	29	73	26	75	81	83	95	33	69	91	81	21	9	6	76	6	3	98	14	29	23

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 14 TWIN OAKS U027^{PV} (HBR)

FTW23U027

Mating Type: Al

DOB: 21/08/2023

AMFU,CAFU,DDFU,NHFU

LD CAPITALIST 316^{PV} SIRE: NZE20149018P073 TWIN OAKS P073^{PV} TWIN OAKS BREEZE M127^{PV} IRELANDS GAPSTED G25^{PV} DAM: NZE20149114K113 TWIN OAKS KOWKA K113^{SV} TWIN OAKS KOWKA G39[#]

Selection Index
\$PRO
\$165
35

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
transfaurum Jugus Cattle Instaation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.5	+9.1	-4.2	+2.5	+45	+88	+118	+113	+15	+4.5	-6.1	+68	+2.4	+2.8	+2.9	-0.5	+2.2	+22	+0.66	+0.72	+1.02	+1.10
Acc	67%	57%	83%	82%	83%	81%	82%	80%	75%	79%	45%	71%	70%	70%	71%	62%	74%	75%	62%	64%	64%	59%
Perc	15	3	53	19	76	61	51	32	67	3	19	48	89	7	9	92	49	44	89	25	63	72

Trait Observed: GL,CE,BWT,200WT,Genomics

		т	rans	Tasm a	an Cat	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	plan	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U237PV (HBR) Lot 15

FTW23U237

Mating Type: Al

DOB: 13/09/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIXPV

SIRE: BSCQ43 WAITARA QUIDDITCH Q43PV WAITARA GT RITA K68^{sv}

KAKAHU KEYSTONE 14468# DAM: NZE20149117N061 TWIN OAKS THEOLA N061PV TWIN OAKS THEOLA H33#

Selection
Index
\$PRO
\$154
47

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	Evalua	ation						
NN	С	ALVING	EASE	Ξ		Ģ	BROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
transformant Angun Cattle Environment	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.0	+7.0	-4.9	+1.8	+47	+86	+101	+85	+10	+2.6	-3.6	+67	+5.6	-0.9	-0.8	+0.6	+2.2	+30	+0.59	+0.92	+1.02	+0.88
Acc	67%	55%	83%	82%	83%	81%	82%	79%	74%	79%	41%	70%	70%	69%	70%	62%	74%	76%	61%	68%	68%	65%
Perc	12	12	42	11	70	67	84	76	94	32	74	52	59	69	58	41	49	16	85	66	63	11

Trait Observed: GL,CE,BWT,200WT,Genomics

TWIN OAKS U255^{₽V} (HBR) Lot 16

FTW23U255

Mating Type: Natural

DOB: 14/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV SIRE: FTW21S031 TWIN OAKS S031PV

TWIN OAKS KOWKA Q146PV

G A R ASHLANDPV DAM: NZE20149120R186 TWIN OAKS BRAID R186PV TWIN OAKS BRAID M44PV

Selection
Index
\$PRO
\$144
58

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
transfaurnan Angun Cattle Traination	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.1	+10.3	-9.2	+2.1	+58	+101	+136	+114	+19	+1.3	-2.5	+78	-1.2	+0.6	+1.8	-1.8	+4.0	+13	+0.05	+1.06	+0.92	+0.98
Acc	66%	57%	82%	81%	82%	80%	81%	78%	74%	78%	41%	69%	68%	68%	69%	59%	73%	75%	61%	65%	65%	60%
Perc	17	1	3	14	21	25	17	31	30	78	90	22	99	35	17	99	13	81	32	87	38	34

Trait Observed: CE,BWT,Genomics

		т	rans	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber :	2024	Breed	plan [·]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
	Calving Ease Growth									Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 17 TWIN OAKS U227^{PV} (HBR)

FTW23U227

Mating Type: Al

DOB: 12/09/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIXPV

SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} G A R MOMENTUM^{PV} **DAM: NZE20149120R274 TWIN OAKS WILMA R274^{PV}** TWIN OAKS WILMA N102^{PV}

Selection
Index
\$PRO
\$117
80

TACE							Se	ptemb	er 202	4 Tran	IsTasm	an Ang	gus Ca	attle E	Ivalua	ation						
NN.	C	ALVING	EASE	Ξ		G	BROW	/ТН		FER	FILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Icanfaonan Angor Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.9	+5.9	+0.2	+1.1	+51	+91	+109	+82	+20	+1.9	-0.9	+81	+2.1	+0.1	+0.7	+0.0	+2.3	+27	+0.28	+0.76	+0.84	+1.06
Acc	67%	57%	83%	82%	83%	81%	81%	79%	74%	79%	42%	70%	70%	69%	70%	62%	74%	77%	62%	70%	70%	67%
Perc	7	21	97	6	50	51	70	80	26	58	98	16	91	46	32	76	47	26	58	33	21	60

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 18 TWIN OAKS U203^{PV} (HBR)

FTW23U203

AMFU,CAFU,DDFU,NHFU

Mating Type: Natural

DOB: 10/09/2023

MILLAH MURRAH PARATROOPER P15^{PV}
SIRE: FTW21S015 TWIN OAKS S015^{PV}
DAM: FT
TWIN OAKS WILMA Q204^{PV}

TWIN OAKS RAMBO Q187^{PV} DAM: FTW21S278 TWIN OAKS KOWKA S278^{PV} TWIN OAKS KOWKA N107^{PV}

Selection Index
\$PRO
\$119
70

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
N.N.	C	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
frontaurum Angue Cattle Trolluntion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.8	+8.1	-10.2	-0.9	+50	+93	+109	+74	+27	+1.2	-2.1	+72	-1.8	+0.4	+0.3	-1.5	+4.6	+1	+0.25	+0.84	+0.88	+1.16
Acc	64%	53%	81%	81%	82%	80%	80%	77%	72%	78%	37%	67%	66%	66%	67%	57%	72%	74%	58%	65%	65%	60%
Perc	2	6	2	1	56	47	70	88	3	81	93	36	99	39	38	99	7	99	54	50	29	85

Trait Observed: CE,BWT,200WT,Genomics

Heifers Calf.

		т	'rans]	Tasma	an Cat	ttle E	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVER	RAGE	EBV'	s		
		Calvin	g Ease				Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 19 TWIN OAKS U219^{PV} (HBR)

FTW23U219

Mating Type: Natural

DOB: 12/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S211 TWIN OAKS S211^{PV}

TWIN OAKS DELI P204PV

MONTANA PAYLOAD 6019[#] **DAM: NZE20149119Q036 TWIN OAKS BRONNIE Q036**^{PV} TWIN OAKS BRONNIE M181^{DV}

Selection
Index
\$PRO
\$169
31

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
transfaunae Angue Cattle Instaation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+4.5	+7.0	-1.6	+4.4	+60	+105	+131	+113	+18	+1.7	-2.9	+80	+8.8	-0.5	+0.3	+0.1	+2.8	+34	-0.01	+0.80	+0.94	+1.26
Acc	64%	55%	81%	81%	82%	80%	80%	77%	73%	78%	39%	68%	67%	67%	68%	58%	72%	74%	59%	64%	64%	59%
Perc	30	12	88	59	13	15	25	32	44	65	85	18	23	60	38	71	34	9	26	41	43	97

Trait Observed: CE,BWT,200WT,DOC,Genomics

Lot 20 TWIN OAKS U151^{PV} (HBR)

FTW23U151

Mating Type: Natural

DOB: 01/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S123 TWIN OAKS S123^{PV}

TWIN OAKS BESS L150#

MUSGRAVE MEDIATOR^{PV} DAM: NZE20149117N158 TWIN OAKS BETH N158^{PV} TWIN OAKS BETH G13[#]

Selection
Index
\$PRO
\$177
24

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
\sim	C.	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
fronclasional Angue Cattle Evoluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.1	+9.0	-5.6	+1.1	+41	+76	+99	+68	+17	+1.8	-6.1	+54	+6.3	+0.4	-0.9	+0.1	+3.8	+13	-0.05	+0.88	+0.92	+0.98
Acc	63%	53%	81%	80%	82%	80%	80%	77%	73%	78%	38%	68%	67%	67%	68%	58%	72%	73%	58%	65%	65%	61%
Perc	3	3	31	6	89	89	86	91	46	62	19	85	50	39	60	71	16	80	22	58	38	34

Trait Observed: CE,BWT,Genomics

		Т	rans	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	۱		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U245^{₽V} (HBR) Lot 21

FTW23U245

Mating Type: Natural

DOB: 12/09/2023

AMFU,CAFU,DDFU,NHFU

TWIN OAKS P183PV

MILLAH MURRAH PARATROOPER P15PV DAM

Selection Index
muex
\$PRO
\$220
3

SIRE: FTW21S151 TWIN OAKS S151PV

TWIN OAKS WINIFRED L32#

I: FTW21S040 TWIN OAI	KS THEOLA S040 ^{PV}
TWIN OAK	S THEOLA N001PV

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	Valua	ation						
1200	C	ALVING	EASE	Ξ		Ģ	ROV	/TH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.8	+5.7	-3.4	+2.9	+54	+93	+120	+90	+16	+4.1	-6.5	+74	+7.8	+3.0	+5.0	-0.4	+2.6	+20	+0.78	+0.64	+0.98	+1.00
Acc	66%	56%	82%	81%	82%	80%	81%	78%	74%	78%	40%	69%	68%	68%	69%	59%	73%	75%	60%	63%	63%	56%
Perc	13	22	66	26	36	47	48	69	61	5	14	32	33	6	2	89	39	51	94	14	53	41

Trait Observed: CE,BWT,200WT,Genomics

Heifers Calf.

TWIN OAKS U211[₽] (HBR) Lot 22

FTW23U211

Mating Type: Natural

DOB: 12/09/2023

AMFU,CAFU,DDF,NHFU

MILLAH MURRAH PARATROOPER P15PV SIRE: FTW21S089 TWIN OAKS S089PV

TWIN OAKS CAROL N037PV

TWIN OAKS M159sv DAM: NZE20149118P378 TWIN OAKS EMMA P378PV GOLDWYN D280#

Selection
Index
\$PRO
\$108
86

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
\sim	C.	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERI	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.3	+1.5	-2.3	+2.0	+49	+92	+127	+95	+28	+1.0	-1.1	+72	+5.0	+0.3	+1.3	+0.3	+2.0	+17	+0.80	+0.86	+0.96	+1.14
Acc	64%	55%	82%	81%	82%	80%	81%	77%	73%	78%	38%	69%	68%	68%	69%	58%	73%	75%	60%	61%	61%	59%
Perc	23	67	81	13	60	48	33	61	2	86	97	37	66	42	23	59	55	63	94	54	48	81

Trait Observed: CE,BWT,200WT,Genomics

		т	'rans1	lasma	an Cat	ttle Ev	valuat	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	ı		Fert	ility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 23 TWIN OAKS U075^{PV} (HBR)

FTW23U075

Mating Type: Al

DOB: 25/08/2023

AMFU,CAFU,DDFU,NHFU

RENNYLEA L519^{PV} SIRE: BHRR102 DUNOON RECHARGE R102^{PV}

DUNOON ELINE M459^{sv}

EXAR MONUMENTAL 6056B^{PV} **DAM: NZE20149120R082 TWIN OAKS MARION R082^{PV}** TWIN OAKS MARION P074^{PV}

Selection
Index
\$PRO
\$194
12

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
200	C	CALVING EASE				G	ROV	VTH		FERT	FILITY			CARC	CASE			ОТІ	HER	STR	UCTL	IRAL
Gattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.6	+6.0	-8.2	+1.6	+62	+110	+145	+144	+7	+1.7	-3.6	+91	+4.9	+0.2	+1.9	-0.7	+3.5	+37	+0.26	+0.72	+0.60	+0.80
Acc	69%	57%	84%	83%	84%	82%	82%	79%	75%	80%	41%	70%	70%	70%	71%	61%	74%	78%	61%	64%	64%	60%
Perc	21	20	7	9	10	9	8	6	98	65	74	5	67	44	16	95	21	5	55	25	1	4

Trait Observed: GL,CE,200WT,Genomics

Lot 24 TWIN OAKS U170^{PV} (HBR)

FTW23U170

Mating Type: Al

DOB: 01/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH NECTAR N334^{PV} SIRE: NMMR53 MILLAH MURRAH RECTOR R53^{PV} MILLAH MURRAH BRENDA N72^{PV} MILLAH MURRAH PARATROOPER P15^{PV} DAM: FTW21S118 TWIN OAKS EBONY S118^{PV} TWIN OAKS K122^{SV}

Selection
Index
\$PRO
\$167
33

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	C	CALVING EASE				Ģ	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
transfaunan Jegus Cattle Instaation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+2.8	+1.5	-6.4	+3.6	+42	+81	+108	+83	+19	+2.8	-3.9	+48	+13.2	+5.0	+5.8	+0.0	+3.4	+33	+0.43	+0.52	+0.72	+0.86
Acc	66%	55%	83%	82%	83%	81%	81%	77%	73%	79%	40%	69%	69%	68%	69%	60%	73%	77%	60%	66%	66%	64%
Perc	46	67	21	40	86	79	74	78	34	26	68	93	3	1	1	76	22	10	73	4	6	9

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.

	TransTasman Cattle Evaluation September 2024 Breedplan Tables - BREED AVERAGE EBV's																						
		Calving	g Ease			(Growtł	ו		Fer	tility			Card	case			Gro	wth	Structural			
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg	
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02	

Lot 25 TWIN OAKS U119^{PV} (HBR)

FTW23U119

Mating Type: Al

DOB: 29/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GT RITA K68^{sv}

G A R ASHLAND^{PV} **DAM: NZE20149120R058 TWIN OAKS COTTY R058**^{PV} TWIN OAKS HEAVEN P316^{PV}

Selection
Index
\$PRO
\$144
57

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
\mathbb{N}	С	ALVING	EASE	Ξ		G	GROWTH			FERT	TILITY			CARC	CASE			ОТІ	HER	STR	UCTU	RAL
Cattle Instantion	CEDir	CEDtrs	GL	BW 200 400 600 MCW Milk SS DtC CWT EMA Rib							Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg			
EBV	+6.6	-0.2	-3.0	+1.8	+48	+91	+117	+99	+19	+2.4	-4.5	+59	+7.8	+0.6	+0.2	+0.9	+0.8	+26	-0.36	+0.98	+0.96	+0.88
Acc	67%	57%	83%	82%	83%	81%	81%	78%	73%	79%	41%	69%	69%	69%	70%	61%	73%	77%	62%	70%	70%	67%
Perc	14	80	72	11	65	53	54	54	35	39	53	75	33	35	40	24	85	28	6	77	48	11

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 26 TWIN OAKS U057^{PV} (HBR)

FTW23U057

Mating	Type: Al
--------	----------

DOB: 23/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S089 TWIN OAKS S089^{PV} TWIN OAKS CAROL N037^{PV} TE MANIA 11 465^{sv} DAM: NZE20149117N298 TWIN OAKS KOWKAN298^{pv} TWIN OAKS KOWKA G112[#]

Selection
Index
\$PRO
\$113
83

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	C,	CALVING EASE GROW								FERI	TILITY	CARCASE							HER	STR	UCTL	JRAL
transfaurum Angur Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+0.5	+1.8	-3.6	+4.9	+47	+93	+114	+110	+12	+1.3	-1.8	+70	+9.3	+0.2	+1.2	+0.5	+1.6	+22	+0.49	+0.74	+0.80	+1.00
Acc	65%	56%	82%	81%	82%	80%	81%	78%	74%	78%	40%	69%	68%	68%	69%	59%	73%	75%	60%	64%	64%	63%
Perc	66	64	63	70	67	46	60	37	86	78	95	43	19	44	24	47	66	42	78	29	15	41

	TransTasman Cattle Evaluation September 2024 Breedplan Tables - BREED AVERAGE EBV's																					
	Calving Ease Growth								Fert	rtility Carcase Growt				wth	Structural							
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 27 TWIN OAKS U025^{PV} (HBR)

FTW23U025

Mating Type: Al

DOB: 21/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GT RITA K68^{sv}

BUBS SOUTHERN CHARM AA31^{PV} **DAM: NZE20149119Q044 TWIN OAKS BRONNIE Q044^{PV}** TWIN OAKS K060^{SV}

Selection
Index
\$PRO
\$140
61

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
200	C	ALVING	EASE	Ξ	GROWTH			FERTILITY					CARC	CASE			ОТІ	HER	STR	UCTL	IRAL	
Gattle Instantion	CEDir	r CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA							EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg				
EBV	+6.4	-0.4	-4.2	+0.9	+39	+75	+89	+74	+18	+3.8	-4.8	+49	+4.9	+1.9	+3.8	-0.3	+3.3	+31	+0.71	+0.98	+1.08	+1.02
Acc	67%	56%	83%	82%	83%	81%	81%	78%	73%	79%	41%	69%	69%	69%	69%	61%	73%	76%	60%	71%	71%	67%
Perc	15	81	53	5	92	90	95	87	45	8	46	92	67	14	5	87	24	15	91	77	75	47

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 28 TWIN OAKS U041^{PV} (HBR)

FTW23U041

Mating Type: Al

DOB: 22/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} TWIN OAKS K065[#] **DAM: NZE20149116M240 TWIN OAKS BREEZE M240**^{DV} TWIN OAKS BREEZE J129^{SV}

Selection
Index
\$PRO
\$168
33

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C.	CALVING EASE GROWTH									FERTILITY C.							ОТІ	HER	STR	UCTL	JRAL
transformant Angue Cattle Trailuation	CEDir	CEDtrs	GL	BW	3W 200 400 600 MCW Milk						DtC	CWT EMA Rib P8 RBY IM				IMF	DOC	NFI-I	Claw	Foot	Leg	
EBV	+5.4	+5.4	-2.3	+2.4	+47	+87	+103	+78	+15	+1.4	-4.9	+67	+4.6	+0.7	+2.4	+0.8	+0.9	+14	-0.18	+0.90	+0.82	+0.90
Acc	66%	54%	83%	82%	83%	81%	81%	78%	74%	79%	40%	69%	69%	69%	70%	61%	73%	76%	60%	69%	69%	66%
Perc	22	25	81	18	69	66	81	84	69	75	43	52	71	33	12	29	83	75	13	62	18	15

	TransTasman Cattle Evaluation September 2024 Breedplan Tables - BREED AVERAGE EBV's																					
		Calvin	g Ease		Growth				Fert	tility			Card	case			Gro	wth	St	tructur	al	
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 29 TWIN OAKS U155^{PV} (HBR)

FTW23U155

Mating Type: Al

DOB: 02/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S089 TWIN OAKS S089^{PV}

TWIN OAKS CAROL N037PV

TWIN OAKS P203^{PV} **DAM: NZE20149120R300 TWIN OAKS FAMOUS R300^{PV}** TWIN OAKS FAMOUS N233^{PV}

Selection Index
\$PRO
\$141
61

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
		ALVING	EASE	Ξ		G	ROV	/TH		FERT	TILITY			CARC	CASE			ОТІ	HER	STR	UCTU	RAL
Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.0	+4.8	-4.2	+3.5	+54	+99	+125	+93	+18	+1.3	-2.7	+77	+3.1	-0.7	-0.2	-0.2	+2.8	+21	+0.36	+0.82	+0.82	+0.94
Acc	62%	52%	82%	80%	81%	79%	80%	76%	72%	77%	36%	67%	66%	66%	67%	57%	71%	73%	57%	65%	65%	60%
Perc	44	31	53	38	36	30	36	64	42	78	88	25	85	65	47	84	34	47	66	46	18	23

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 30 TWIN OAKS U005^{PV} (HBR)

FTW23U005

Mating Type: Al

DOB: 15/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S099 TWIN OAKS S099^{PV}

TWIN OAKS CREEK Q060PV

TWIN OAKS P047^{PV} **DAM: NZE20149120R246 TWIN OAKS EMERALD R246^{PV}** GOLDWYN G173[#]

Selection
Index
\$PRO
\$135
67

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C,	ALVING	EASE	Ξ		G	ROV	/TH		FERI	TILITY			CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
transfaurum Jugun Cattle Instaation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.4	+4.0	-9.1	+1.4	+42	+76	+97	+94	+20	+0.6	-3.9	+57	+5.7	-0.4	-1.8	+0.5	+4.8	+29	+0.02	+1.06	+0.84	+0.98
Acc	63%	53%	83%	81%	82%	80%	80%	77%	72%	77%	37%	68%	67%	67%	68%	58%	72%	74%	58%	61%	61%	57%
Perc	9	40	4	8	86	90	89	62	26	93	68	78	58	58	74	47	6	19	29	87	21	34

		т	'rans T	Tasm a	ın Ca	ttle E	valua	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease				Growtł	ו		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 31 TWIN OAKS U235^{PV} (HBR)

FTW23U235

Mating Type: Al

.

DOB: 14/09/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GT RITA K68^{sv}

EXAR MONUMENTAL 6056B^{PV} **DAM: NZE20149119Q082 TWIN OAKS PEG Q082^{PV}** TWIN OAKS PEG K006^{SV}

Selection
Index
\$PRO
\$141
61

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
		ALVING	EASE	Ξ		G	ROV	VTH		FERT	ILITY			CARC	CASE			ОТ	HER	STR	UCTU	RAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.4	+1.7	-5.1	+3.6	+47	+83	+99	+87	+14	+2.2	-3.7	+69	+8.9	-0.5	-1.4	+1.5	+1.8	+26	+0.65	+0.98	+0.84	+1.08
Acc	67%	55%	83%	82%	83%	81%	82%	79%	74%	79%	40%	70%	69%	69%	70%	61%	73%	77%	61%	70%	70%	66%
Perc	40	65	39	40	69	75	87	73	73	46	72	47	22	60	68	6	60	29	88	77	21	66

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 32 TWIN OAKS U209^{PV} (HBR)

FTW23U209

Mating	у Туре	: Al								DOB:	11/09/	2023						AMF	-U,CA	FU,DI	DFU,N	NHFU
SIRE: F		ILLAH N 6099 TV					'ER F	P15 ^{₽V}	DA	M: FT	W21S3		n oak I n oa			S 334	PV					ection Idex
	T۱	VIN OA	KS CF	REEK	Q060	PV						TWI	N OAK	(S PO	RTIA	P084 ^P	v				\$	PRO 168 32
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
PNN (C.	ALVING	EAS	Ξ		G	ROV	VTH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
toriclaurian Angun Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.3	+2.0	-2.4	+3.4	+48	+90	+107	+95	+14	+2.0	-3.8	+66	+12.4	+1.7	+3.3	+0.9	+1.8	+1	-0.14	+0.98	+0.78	+0.96
Acc	63%	53%	82%	81%	82%	79%	80%	77%	72%	77%	37%	67%	66%	66%	67%	57%	72%	74%	58%	63%	63%	60%
Perc	41	62	80	36	64	54	74	61	72	54	70	54	5	16	7	24	60	99	16	77	12	28

Trait Observed: GL,CE,BWT,200WT,Genomics

		Т	'rans1	Fasma	in Ca	tle Ev	valua	tion S	epter	nber :	2024	Breed	lplan	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 33 TWIN OAKS U051^{PV} (HBR)

FTW23U051

Mating Type: Al

.

DOB: 23/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S099 TWIN OAKS S099PV

TWIN OAKS CREEK Q060PV

MATAURI COMPLETE F010# DAM: NZE20149114K217 TWIN OAKS PANSY K217# GOLDWYN F484#

Selection
Index
\$PRO
\$171
29

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
		ALVING	EASE	Ξ		G	GROV	VTH		FERT	TILITY			CARC	CASE			ОТІ	HER	STR	UCTL	RAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.0	-0.2	-3.0	+1.9	+37	+76	+86	+53	+20	+1.5	-4.9	+58	+8.3	+1.4	+3.0	+0.3	+4.7	+24	+0.43	+0.70	+0.94	+1.14
Acc	64%	54%	83%	81%	82%	80%	80%	77%	73%	78%	38%	69%	68%	68%	69%	59%	73%	74%	59%	65%	65%	60%
Perc	12	80	72	12	95	89	96	98	29	72	43	78	28	20	8	59	6	36	73	22	43	81

Trait Observed: GL,CE,BWT,200WT,DOC,Genomics

FTW23U189

Lot 34 TWIN OAKS U189^{PV} (HBR)

Mating	д Туре	: Al							l	DOB:	07/09/	2023						AMF	U,CA	FU,DI	DFU,N	NHFU
SIRE: B	SCQ43	B WAITA	-	UIDD	тсн		v		DA	M: FT	W21S0	98 TW	IN OA	KS EI	RINA						In	ection Idex PRO
WAITARA GT RITA K68 ^{sv} TWIN OAKS ERINA Q200 ^{PV}																\$	189 15					
TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
N.M.	С	ALVING	EASE	Ξ		Ģ	ROV	VTH		FER	FILITY			CAR	CASE			ОТ	HER	STR	UCTL	IRAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+4.2	+1.7	-1.8	+1.6	+49	+97	+114	+86	+12	+0.7	-4.6	+80	+9.4	+1.8	+4.2	+0.5	+1.3	+18	+0.74	+1.00	+0.86	+0.90
Acc	67%	55%	83%	82%	83%	81%	82%	79%	74%	79%	40%	69%	69%	69%	70%	61%	74%	77%	61%	69%	69%	66%
Perc	33	65	86	9	60	36	60	74	84	91	50	19	19	15	3	47	74	61	92	80	25	15

Trait Observed: GL,CE,BWT,200WT,DOC,Genomics

		т	rans	Tasm a	in Cat	ttle E	valua	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growtł	ı		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 35 TWIN OAKS U091^{PV} (HBR)

FTW23U091

Mating Type: Al

DOB: 26/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GUIDDITCH Q43 WAITARA GT RITA K68^{sv} TWIN OAKS P073^{PV} **DAM: NZE20149120R202 TWIN OAKS BRONNIE R202^{PV}** TWIN OAKS BRONNIE P174^{PV}

Selection Index
\$PRO
\$178
23

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	C	ALVING	EASE	Ξ	GROWTH					FERT			CARC	CASE			ОТ	HER	STR	UCTU	JRAL	
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.1	+2.3	-5.4	+3.7	+44	+83	+100	+63	+8	+1.2	-4.8	+56	+7.5	+1.1	+1.7	+0.8	+1.3	+19	+0.42	+0.78	+0.76	+0.82
Acc	66%	54%	83%	82%	83%	81%	81%	78%	73%	79%	40%	69%	69%	68%	70%	60%	73%	76%	60%	69%	69%	66%
Perc	17	59	34	43	78	76	86	94	96	81	46	80	36	25	18	29	74	57	72	37	10	5

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 36 TWIN OAKS U013^{PV} (HBR)

FTW23U013

Mating Type: Al

DOB: 18/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S089 TWIN OAKS S089^{PV}

TWIN OAKS CAROL N037PV

TWIN OAKS N017^{PV} **DAM: NZE20149119Q192 TWIN OAKS CINDY Q192^{PV}** TWIN OAKS CINDY N069^{PV}

Selection
Index
\$PRO
\$118
80

TACE	CE September 2024 TransTasman Angus Cattle Evaluation																					
\sim	CALVING EASE GROWTH									FERT	ILITY	CARCASE							HER	STR	UCTL	JRAL
transfasman Angus Cattle Institution	CEDir CEDtrs GL BW 200 400 600 MCW Mi						Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg		
EBV	+2.2	+3.6	-6.4	+3.7	+42	+77	+94	+72	+13	+1.8	-1.6	+60	+9.6	+0.2	-0.4	+0.4	+3.7	+27	+0.75	+0.84	+0.88	+0.82
Acc	64%	53%	82%	81%	82%	80%	80%	77%	73%	78%	38%	68%	67%	67%	68%	58%	72%	74%	58%	64%	64%	61%
Perc	52	45	21	43	86	88	92	89	77	62	96	73	17	44	51	53	17	23	93	50	29	5

		Т	'rans'	Tasma	an Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
	Calving Ease Growth								Fert	ertility Carcase Growth				wth	Structural							
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 37 TWIN OAKS U145^{PV} (HBR)

FTW23U145

Mating Type: Al

DOB: 01/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S099 TWIN OAKS S099^{PV}

TWIN OAKS CREEK Q060PV

TWIN OAKS AMARILLO Q093^{PV} DAM: FTW21S216 TWIN OAKS RONA S216^{PV} TWIN OAKS RONA M112^{PV}

Selection
Index
\$PRO
\$159
42

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	С	ALVING	EASE	Ξ		G	GROV	VTH	FERTILITY					CARC	CASE			ОТІ	HER	STR	UCTU	RAL
Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.1	+7.5	-6.3	+0.2	+46	+85	+106	+94	+15	+1.5	-3.2	+58	+8.7	-0.2	+0.1	+0.7	+2.8	+10	-0.13	+0.80	+0.76	+1.04
Acc	64%	54%	83%	81%	82%	80%	80%	77%	73%	78%	37%	68%	67%	67%	68%	58%	72%	74%	59%	64%	64%	57%
Perc	3	9	22	2	74	69	76	63	67	72	81	77	24	53	42	35	34	88	16	41	10	54

Trait Observed: GL,CE,BWT,200WT,DOC,Genomics

Heifers Calf.

Mating Type: Al

Lot 38 TWIN OAKS U149^{PV} (HBR)

DOB: 01/09/2023

AMFU,CAFU,DDFU,NHFU

FTW23U149

G A R PHOENIX ^{PV}
SIRE: BSCQ43 WAITARA QUIDDITCH Q43 ^{PV}
WAITARA GT RITA K68 ^{sv}

TWIN OAKS K065# DAM: NZE20149116M282 TWIN OAKS M282# FLORIDALE EMMA#

Selection Index
\$PRO
\$146
56

TACE		September 2024 TransTasman Angus Cattle Evaluation																				
	C,	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERTILITY		CARCASE						ОТ	HER	STR	UCTL	JRAL
transfauruan Jingun Cattle Trailuation	CEDir CEDtrs GL BW 200 400 600 MCW Milk						Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg		
EBV	+4.1	+1.7	-2.9	+2.6	+41	+77	+108	+69	+24	+2.2	-4.1	+72	+7.9	+1.1	+0.4	+1.0	+2.8	+45	+0.09	+0.58	+0.70	+0.98
Acc	66%	55%	83%	82%	83%	81%	81%	78%	74%	79%	40%	69%	69%	69%	70%	61%	73%	76%	60%	68%	68%	65%
Perc	34	65	73	21	87	87	73	91	8	46	63	38	32	25	37	20	34	1	36	8	5	34

		т	rans	Tasma	ın Cat	tle Ev	valuat	tion S	epter	nber 2	2024	Breed	lplan [·]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
	Calving Ease Growth								Fert	ertility Carcase Growth					Structural							
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 39 TWIN OAKS U257^{PV} (HBR)

FTW23U257

Mating Type: Al

DOB: 14/09/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIXPV

SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} TWIN OAKS Q011^{PV} DAM: FTW21S058 TWIN OAKS EMERALD S058^{PV} TWIN OAKS EMERALD Q050^{PV}

Selection
Index
\$PRO
\$129
72

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Standauman Angun Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+4.3	-2.9	-3.9	+3.3	+50	+97	+122	+116	+16	+3.1	-3.8	+69	+7.1	-2.8	-5.0	+0.8	+3.3	+16	+0.57	+0.98	+0.90	+0.96
Acc	66%	55%	83%	82%	83%	81%	81%	78%	73%	79%	39%	69%	69%	68%	69%	60%	73%	76%	60%	70%	70%	66%
Perc	32	92	58	34	52	34	42	28	58	19	70	47	41	95	98	29	24	68	84	77	33	28

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.

Lot 40 TWIN OAKS U287^{PV} (HBR)

FTW23U287

Mating Type: Natural

DOB: 19/09/2023

AMFU,CAFU,DDFU,NHFU

TWIN OAKS P183^{PV}

SIRE: FTW21S145 TWIN OAKS S145^{PV}

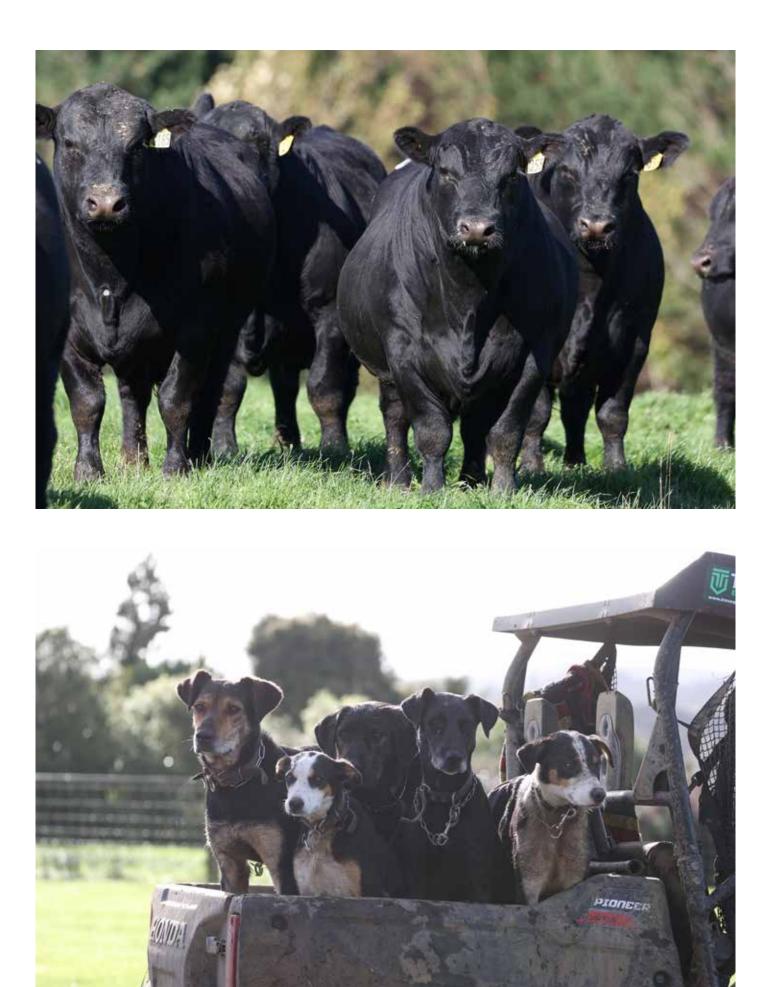
TWIN OAKS BRONNIE Q044PV

MILLAH MURRAH PARATROOPER P15^{PV} DAM: FTW21S004 TWIN OAKS FADINE S004^{PV} TWIN OAKS FADINE Q114^{PV}

Selection
Index
\$PRO
\$155
46

TACE																						
\sim	C	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	FILITY			CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.0	+8.4	-5.7	+0.4	+42	+79	+98	+88	+21	+1.5	-3.4	+60	+7.5	+3.6	+3.6	-0.2	+4.1	+16	+0.95	+1.10	+1.08	+1.16
Acc	65%	54%	81%	80%	82%	79%	80%	77%	72%	78%	38%	67%	67%	66%	67%	57%	71%	74%	58%	67%	67%	61%
Perc	3	5	30	3	86	84	88	72	20	72	78	72	36	3	5	84	12	70	97	91	75	85

Trait Observed: CE,BWT,200WT,DOC,Genomics



		Т	'rans1	Tasma	an Cat	tle Ev	valua	tion S	epter	nber	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	า		Fer	tility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 41 TWIN OAKS U273^{PV} (HBR)

FTW23U273

Mating Type: Natural

DOB: 17/09/2023

AMFU,CAFU,DDFU,NHFU

Claw

+1.00

63%

80

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S015 TWIN OAKS S015^{PV}

TWIN OAKS WILMA Q204PV

TWIN OAKS Q109^{PV} DAM: FTW21S292 TWIN OAKS FLORIDALE S292^{PV} FLORIDALE IMOGEN[#]

Selection
Index
\$PRO
\$160
41

Lea

+1.02

59%

47

STRUCTURAL

Foot

+0.90

64%

33

September 2024 TransTasman Angus Cattle Evaluation TACE CALVING EASE GROWTH FERTILITY CARCASE OTHER CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I EBV +9.3 +8.1 -7.7 +0.7 +54 +100 +128 +96 +27 +2.8 -4.6 +79 +3.1 -0.7 -2.3 -0.3 +3.5 +29 +0.24 63% 53% 81% 81% 82% 80% 80% 77% 73% 78% 38% 67% 67% 66% 67% 57% 72% 74% 58% Acc

26

50

21

Trait Observed: CE,BWT,200WT,DOC,Genomics

10

4 36 26 31

6

Heifers Calf.

Perc

3

59

3

85

65 81

87

21

18

53

Lot 42 TWIN OAKS U305^{PV} (HBR)

FTW23U305

Mating Type: Natural

DOB: 22/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S031 TWIN OAKS S031^{PV}

TWIN OAKS KOWKA Q146PV

LD CAPITALIST 316^{PV} DAM: NZE20149120R076 TWIN OAKS DELI R076^{PV} TWIN OAKS DELI P206^{SV}

Selection Index
\$PRO
\$160
11

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
200	C.	ALVING	EASE	Ξ		G	ROV	VTH		FERI	ILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+8.8	+7.2	-3.6	+1.3	+43	+90	+107	+73	+21	+1.5	-5.8	+74	+6.0	-0.2	-1.4	+0.5	+1.6	-1	+0.57	+0.80	+0.82	+0.86
Acc	66%	57%	82%	81%	82%	80%	81%	78%	74%	78%	42%	68%	68%	68%	69%	59%	73%	75%	60%	65%	65%	60%
Perc	4	11	63	7	84	57	74	88	19	72	24	33	54	53	68	47	66	99	84	41	18	9

		Т	rans1	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growtł	ו		Fert	tility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 43 TWIN OAKS U243^{PV} (HBR)

FTW23U243

Mating Type: Natural

DOB: 13/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S033 TWIN OAKS S033PV

TWIN OAKS BESS Q216PV

KAKAHU KEYSTONE 14468# **DAM: NZE20149119Q178 TWIN OAKS BESS Q178**^{PV} TWIN OAKS BESS M169^{PV}

Selection
Index
\$PRO
\$150
51

TACE							Se	ptemb	oer 202	4 Tran	IsTasm	an Ang	gus Ca	attle E	Ivalua	ation						
200	С	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	RUCTU	JRAL
Standaunan Jegur Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.7	+7.2	-6.3	+1.7	+52	+101	+126	+113	+13	+4.3	-4.0	+57	+2.2	+1.7	+0.8	-1.1	+2.7	+14	+0.29	+1.12	+1.18	+1.04
Acc	65%	56%	81%	81%	82%	80%	81%	78%	73%	78%	39%	68%	67%	67%	68%	58%	72%	74%	59%	64%	64%	59%
Perc	13	11	22	10	43	24	34	32	80	4	65	80	90	16	30	99	37	77	59	93	90	54

Trait Observed: CE,BWT,200WT,Genomics

Lot 44 TWIN OAKS U307^{PV} (HBR)

FTW23U307

Mating Type: Natural

DOB: 23/09/2023

AMFU,CAFU,DDFU,NHFU

TWIN OAKS P183^{PV} SIRE: FTW21S145 TWIN OAKS S145^{PV}

TWIN OAKS BRONNIE Q044PV

MILLAH MURRAH PARATROOPER P15^{PV} DAM: FTW21S026 TWIN OAKS MISTRESS S026^{PV} TWIN OAKS MISTRESS Q034^{PV}

Selection
Index
\$PRO
\$198
10

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	С	ALVING	EASE	Ξ		G	ROV	VTH		FERI	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Cattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.4	+9.1	-0.9	+2.7	+56	+93	+115	+82	+15	+3.1	-5.3	+64	+7.8	+2.3	+3.1	+0.1	+1.3	+8	+0.82	+0.90	+0.82	+1.02
Acc	65%	55%	81%	81%	82%	80%	80%	77%	73%	78%	39%	67%	67%	67%	68%	58%	72%	75%	59%	66%	66%	60%
Perc	22	3	92	23	26	48	59	79	63	19	34	61	33	10	8	71	74	91	95	62	18	47

Trait Observed: CE,BWT,200WT,DOC,Genomics

		Т	ˈrans]	Tasma	an Ca	ttle Ev	valuat	tion S	epter	nber	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease				Growth	ı		Fer	tility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U233PV (HBR) Lot 45

FTW23U233

Mating Type: Natural

DOB: 13/09/2023

AMFU,CAFU,DDFU,NHFU

TWIN OAKS P183PV

MILLAH MURRAH PARATROOPER P15PV DA

Selection
Index
\$PRO
\$194
12

SIRE: FTW21S151 TWIN OAKS S151PV

TWIN OAKS WINIFRED L32#

AM: FTW21S018 TWIN OAKS GEM S018 ^{PV}	
TWIN OAKS GEM L93 [#]	

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	ILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
transfaurnan Angun Cattle Traination	CEDir	CEDtrs	CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I Classical									Claw	Foot	Leg								
EBV	+8.7	+10.2	-11.4	+2.0	+64	•60 •100 •000 •100							+0.4	-0.4	+2.3	+12	-0.48	+1.06	+1.02	+0.88		
Acc	65%	54%	81%	81%	82%	80%	% 80% 77% 73% 78% 39% 67%						67%	67%	68%	58%	72%	75%	59%	66%	66%	61%
Perc	4	1	1	13	6	7	19	18	45	21	36	24	87	39	37	89	47	81	3	87	63	11

Trait Observed: CE,BWT,200WT,DOC,Genomics

Heifers Calf.

TWIN OAKS U313PV (HBR) Lot 46

FTW23U313

Mating	д Туре	: Natu	ral							DOB:	26/09/	2023						AMF	=U,CA	FU,DI	DFU,N	NHFU
SIRE: F	TW21S		VIN O	AKS S	1 97 P	/	ER P1	5 ^{PV}	DA	M: FT	W21S3	40 TW		KS EI	BONY						In	ection dex PRO
	TWIN OAKS WILMA P006PV TWIN OAKS EBONY												ONY	J142™	/				\$	181		
		September 2024 TransTasman Angus Cattle Evaluation																21				
		ALVING	EAS	Ξ		G	GROV	VTH		FER	TILITY		-	CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Satis Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	V +7.2 +10.9 -9.8 +2.0 +54 +100 +125 +108 +15 +4.1 -5.3 +73 +1.1 +0.5 -1.2 -0.4 +3.5 +20 +0.49 +1.02 +												+1.14	+1.08								
Acc	c 63% 53% 81% 80% 81% 79% 80% 77% 72% 77% 37% 67% 66% 66% 67% 57% 71% 73% 58% 65% 6												66%	60%								
Perc	10	1	2	13	36	27	37	39	65	5	34	34	95	37	65	89	21	52	78	82	85	66

Trait Observed: BWT,200WT,Genomics

		т	rans	Tasma	ın Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ı		Fert	tility			Card	case			Gro	wth	S	tructura	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

TWIN OAKS U009PV (HBR) Lot 47

FTW23U009

Mating Type: Al

DOB: 16/08/2023

AMFU,CAFU,DDFU,NHFU

EXAR MONUMENTAL 6056BPV SIRE: NZE20149020R053 TWIN OAKS R053PV TWIN OAKS BRAID M172PV

MUSGRAVE BIG SKYPV DAM: NZE20149116M173 TWIN OAKS BETH M173PV TWIN OAKS BETH G13#

Selection
Index
\$PRO
\$122
77

																						77
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	С	ALVING	EASE	Ξ		G	ROV	/TH		FERT	TILITY			CARC	CASE			ОТІ	HER	STR	UCTU	IRAL
Gattle Instantion	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.2	+10.3	-6.7	-0.7	+46	+86	+113	+102	+18	+0.5	-2.9	+59	+4.4	+0.8	+1.2	-0.1	+1.0	+13	-0.47	+0.92	+0.84	+0.82
Acc	67%	58%	84%	83%	84%	82%	82%	79%	75%	80%	43%	70%	70%	70%	71%	62%	74%	76%	61%	59%	59%	53%
Perc	3	1	18	1	71	67	63	50	40	94	85	75	73	31	24	80	81	80	3	66	21	5

Trait Observed: GL,CE,BWT,200WT,Genomics

TWIN OAKS U129^{₽V} (HBR) Lot 48

FTW23U129

Mating Type: Al

DOB: 31/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIXPV SIRE: BSCQ43 WAITARA QUIDDITCH Q43PV WAITARA GT RITA K68sv

MILLAH MURRAH PARATROOPER P15PV DAM: FTW21S020 TWIN OAKS VALENTINE S020PV TWIN OAKS VALENTINE L158#

Selection
Index
\$PRO
\$150
51

TACE							Se	ptemb	er 202	4 Tran	IsTasm	an Ang	jus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		Ģ	ROV	VTH		FER	FILITY			CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
frontaurum Angue Cattle Trailuation	CEDir	CEDtrs	GL	L BW 200 400 600 MCW Milk							DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+2.7	+4.1	-6.3	+4.6							-3.5	+68	+5.5	-3.2	-4.1	+1.6	+1.3	+9	+0.02	+0.70	+0.74	+1.00
Acc	68%	56%	83%							80%	41%	70%	70%	69%	70%	61%	74%	77%	61%	69%	70%	67%
Perc											49	60	97	95	5	74	90	29	22	8	41	

Trait Observed: GL,CE,BWT,200WT,Genomics

		т	'rans1	Tasma	an Ca	ttle Ev	valuat	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ı		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 49 TWIN OAKS U283^{PV} (HBR)

FTW23U283

Mating Type: Al

DOB: 19/09/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GODDITCH Q43

TWIN OAKS N091^{PV} **DAM: NZE20149119Q312 TWIN OAKS PANSY Q312^{PV}** TWIN OAKS PANSY K133^{SV}

Selection
Index
\$PRO
\$159
41

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	tion						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	ILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
transfaurum Angun Cattle Instaation	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I Claw								Foot	Leg												
EBV								+0.66	+0.74													
Acc	65%	53% 83% 82% 83% 81% 81% 78% 73% 79% 39% 69% 69% 69% 69% 70% 61% 73% 76% 60% 69% 69%					69%	65%														
Perc	53	82	88	68	43	59	66	74	81	90	53	39	18	58	33	10	91	84	41	22	3	2

Trait Observed: GL,CE,BWT,200WT,Genomics

Lot 50 TWIN OAKS U093^{PV} (HBR)

Mating Type: Al

DOB: 27/08/2023

AMFU,CAFU,DDFU,NHFU

FTW23U093

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} TWIN OAKS MCBRIDE M347^{PV} **DAM: NZE20149118P120 TWIN OAKS UNVEIL P120^{PV}** TWIN OAKS UNVEIL M253^{DV}

Selection Index
\$PRO
\$150
51

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	CALVING EASE GROWTH									FERT	TILITY			CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
transformant Angue Cattle Trailuation	CEDir	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT E									EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg		
EBV	+10.0	+4.0	-3.2 +0.4 +41 +75 +87 +58 +17						+17	+3.1	-4.4	+54	+7.1	-0.9	+0.4	+0.9	+2.0	+43	+0.33	+0.70	+0.80	+1.06
Acc	67%	56%	83%	3% 82% 83% 81% 82% 79% 74%						79%	40%	70%	70%	69%	70%	61%	74%	76%	61%	67%	67%	64%
Acc 67% 56% 83% 82% 81% 82% 79% 74% 79% 40% 70% 70% Perc 2 40 69 3 90 91 96 96 47 19 56 85 41									41	69	37	24	55	2	63	22	15	60				

		Т	rans	Tasma	an Cat	ttle Ev	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	ı		Fert	tility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 51 TWIN OAKS U239^{PV} (HBR)

FTW23U239

Mating Type: Natural

DOB: 13/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S275 TWIN OAKS S275PV

TWIN OAKS WILMA N097PV

TWIN OAKS P203^{PV} **DAM: NZE20149120R340 TWIN OAKS ALICE R340^{sv}** TWIN OAKS ALICE J009[#]

Selection
Index
\$PRO
\$165
35

TACE							Se	ptemb	oer 202	4 Tran	IsTasm	an Ang	gus Ca	attle E	Ivalua	ation						
		ALVING	EASE	Ξ		Ģ	GROV	/TH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.8	+5.3	-5.7	+2.6	+56	+99	+127	+101	+22	+1.3	-5.5	+85	+0.8	+0.3	+0.5	+0.3	+1.1	+11	-0.04	+0.76	+0.94	+1.06
Acc	62%	52%	81%	80%	81%	79%	80%	76%	72%	77%	36%	67%	66%	66%	67%	57%	72%	73%	58%	64%	64%	60%
Perc	19	26	30	21	26	28	33	51	15	78	30	10	96	42	35	59	79	84	23	33	43	60

Trait Observed: CE,BWT,200WT,Genomics

Lot 52 TWIN OAKS U081^{PV} (HBR)

FTW23U081

Mating Type: Al

DOB: 26/08/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S099 TWIN OAKS S099^{PV}

TWIN OAKS CREEK Q060PV

G A R MOMENTUM^{PV} **DAM: NZE20149118P062 TWIN OAKS ALDA P062^{PV}** TWIN OAKS ALDA G48[#]

Selection
Index
\$PRO
\$75
96

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	С	CALVING EASE GROWTH									TILITY			CARC	CASE			ОТІ	HER	STR	RUCTL	JRAL
Cattle Trailuation	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I Classical									Claw	Foot	Leg										
EBV	+2.9	+3.3	-3.1	+2.9	+39	+74	+93	+78	+17	+1.6	-1.2	+41	+7.3	-0.7	-1.8	+1.1	+1.3	+16	+0.04	+0.72	+0.96	+1.08
Acc	65%	55%	% 82% 81% 82% 79% 80% 77% 72							77%	40%	68%	67%	67%	68%	58%	72%	74%	59%	66%	66%	63%
Perc											66											

		Т	'rans l	Tasma	an Ca	ttle E	valua	tion S	epter	nber 2	2024	Breed	plan	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	ı		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 53 TWIN OAKS U247^{PV} (HBR)

FTW23U247

Mating Type: Al

DOB: 14/09/2023

AMFU,CAFU,DDF,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV}

WAITARA GT RITA K68^{sv}

TWIN OAKS RAMBO Q187^{PV} DAM: FTW21S204 TWIN OAKS RUA S204^{PV} TWIN OAKS RUA K131[#]

Selection
Index
\$PRO
\$175
25

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	tion						
	C	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
transfaurum Angur Cattle Instantion	CEDir	CEDtrs	GL BW 200 400 600 MCW Milk SS DtC CWT EMA Rib P8 RBY IMF DOC NFI-I Claw								Claw	Foot	Leg									
EBV	+9.3	+6.2	-0.3	+0.1	1 +42 +85 +104 +74 +21 +1.3 -5.0 +69 +9.6 +2.0 +2.6 +0.7 +1.8 +19 +0.39 +						+0.86	+0.86	+1.02									
Acc	66%	54%	83%	82%	83%	81%	81%	78%	8% 73% 79% 40% 69% 69% 68% 69% 60% 73% 76% 60%					69%	69%	65%						
Perc	3	18	95	2	86	70	80	87	19	78	41	47	17	13	11	35	60	57	69	54	25	47

Trait Observed: GL,CE,BWT,200WT,Genomics

Heifers Calf.

Lot 54 TWIN OAKS U007^{PV} (HBR)

FTW23U007

Mating Type: Al

DOB: 16/08/2023

AMFU,CAFU,DDFU,NHFU

EXAR MONUMENTAL 6056B^{PV} SIRE: NZE20149020R053 TWIN OAKS R053^{PV} TWIN OAKS BRAID M172^{PV} TE MANIA 11 465^{sv} DAM: NZE20149117N254 TWIN OAKS N254^{sv} GOLDWYN F484[#]

Selection Index
\$PRO
\$167
33

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Sattle Instantion	CEDir	CEDir CEDtrs GL B				400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+8.0	+7.1	-8.2	+2.0	+42	+85	+111	+79	+19	+3.8	-5.3	+66	+7.4	+3.9	+4.3	+0.1	+0.7	+48	+0.81	+0.74	+0.94	+0.92
Acc	64%	54%	83%	81%	82%	80%	80%	77%	72%	78%	40%	68%	67%	67%	68%	59%	72%	74%	58%	64%	64%	60%
Perc	7	11	7	13	85	70	67	83	34	8	34	56	37	2	3	71	87	1	94	29	43	19

		Т	'rans1	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growtł	ו		Fert	tility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 55 TWIN OAKS U249^{PV} (HBR)

FTW23U249

Mating Type: Natural

DOB: 14/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S027 TWIN OAKS S027^{PV}

TWIN OAKS J133sv

RENNYLEA EDMUND E11^{PV} DAM: NZE20149115L097 TWIN OAKS BELL L97# TWIN OAKS BELL H29#

Selection
Index
\$PRO
\$121
78

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		G	ROV	/TH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	RUCTU	RAL
Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.2	+1.3	-3.3	+3.5	+44	+76	+99	+97	+10	+2.7	-3.5	+56	+6.6	+2.2	+0.9	+1.2	+0.5	+19	+0.35	+0.86	+1.06	+1.08
Acc	65%	57%	81%	81%	82%	80%	80%	77%	73%	78%	43%	69%	69%	68%	69%	60%	73%	74%	61%	63%	63%	61%
Perc	42	69	68	38	79	90	87	57	92	29	76	81	46	11	29	13	90	55	65	54	71	66

Trait Observed: CE,BWT,200WT,DOC,Genomics

Lot 56 TWIN OAKS U029^{PV} (HBR)

FTW23U029

Mating Type: Al

DOB: 21/08/2023

AMFU,CAFU,DDFU,NHFU

G A R PHOENIX^{PV} SIRE: BSCQ43 WAITARA QUIDDITCH Q43^{PV} WAITARA GT RITA K68^{SV} BUBS SOUTHERN CHARM AA31^{PV} DAM: NZE20149120R084 TWIN OAKS MOANA R084^{PV} TWIN OAKS MOANA J028^{SV}

Selection Index
\$PRO
\$118
80

TACE							Se	ptemb	er 202	4 Tran	IsTasm	an Ang	gus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	FILITY			CARC	CASE			ОТІ	HER	STR	UCTL	JRAL
transfasman Angue Cattle Instantion	CEDir	CEDir CEDtrs GL B				400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.8	+0.7	-4.5	+2.5	+41	+76	+95	+76	+21	+1.7	-2.8	+47	+9.2	+0.8	+1.3	+0.5	+2.7	+11	+0.18	+0.82	+0.94	+0.80
Acc	67%	56%	83%	82%	83%	81%	82%	79%	74%	80%	41%	70%	70%	69%	70%	61%	74%	77%	61%	69%	69%	66%
Perc	19	74	48	19	89	89	91	85	21	65	87	94	20	31	23	47	37	85	46	46	43	4

		т	rans	Tasma	ın Cat	ttle Ev	valuat	tion S	epter	nber 2	2024	Breed	plan	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ı		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 57 TWIN OAKS U053^{PV} (HBR)

FTW23U053

Mating Type: Al

DOB: 23/08/2023

AMFU,CAFU,DDFU,NHFU

EXAR MONUMENTAL 60568^{PV} **SIRE: NZE20149020R053 TWIN OAKS R053^{PV}** TWIN OAKS BRAID M172^{PV}

TE MANIA 11 465^{sv} DAM: NZE20149115L042 TWIN OAKS CAROL L42[#] GOLDWYN G165[#]

Selection
Index
\$PRO
\$141
61

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	tion						
\mathbb{N}		ALVING	EASE	Ξ		G	ROW	VTH		FERT	TILITY			CARC	ASE			ОТІ	HER	STR	UCTU	IRAL
transfasman Angue Cattle Trailuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.0	+6.8	-3.3	+1.2	+27	+64	+80	+64	+14	+1.2	-4.5	+40	+8.6	+4.2	+4.4	-0.1	+3.3	+25	+0.73	+0.84	+1.10	+1.06
Acc	63%	52%	82%	80%	81%	79%	80%	76%	71%	77%	38%	67%	66%	66%	67%	58%	71%	73%	57%	66%	66%	63%
Perc	12	13	68	6	99	99	98	94	73	81	53	98	25	2	3	80	24	31	92	50	79	60

Trait Observed: GL,CE,BWT,200WT,DOC,Genomics

Lot 58 TWIN OAKS U065^{PV} (HBR)

FTW23U065

Mating Type: Al

DOB: 24/08/2023

AMFU,CAFU,DDFU,NHFU

EXAR MONUMENTAL 6056B^{PV} SIRE: NZE20149020R053 TWIN OAKS R053^{PV} TWIN OAKS BRAID M172^{PV} TE MANIA 11 465^{sv} DAM: NZE20149116M070 TWIN OAKS ISOBEL M70^{pv} GOLDWYN F408#

Index
\$PRO
\$124
76

0.1.....

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	tion						
	C	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
kondaunan Jegur Catte Instaaton	CEDir	CEDir CEDtrs GL E				400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+10.0	+7.1	-3.4	-0.4	+31	+61	+74	+48	+16	+1.4	-3.6	+48	+7.0	+0.9	+0.1	+0.9	+2.4	+22	+0.44	+0.88	+1.02	+0.92
Acc	64%	55%	82%	81%	82%	80%	80%	77%	72%	78%	40%	68%	67%	67%	68%	59%	72%	74%	58%	65%	65%	61%
Perc	2	11	66	1	99	99	99	98	54	75	74	92	42	29	42	24	44	42	74	58	63	19

		Т	rans	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber :	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	۱		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 59 TWIN OAKS U159^{PV} (HBR)

FTW23U159

Mating Type: Al

DOB: 02/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S099 TWIN OAKS S099[₽]

TWIN OAKS CREEK Q060PV

G A R ASHLAND^{PV} **DAM: NZE20149120R228 TWIN OAKS ALDA R228^{PV}** TWIN OAKS ALDA M325^{PV}

Selection Index
\$PRO
\$191
14

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		G	GROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTU	RAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+8.4	+5.4	-6.1	+1.2	+42	+83	+98	+81	+6	+2.1	-4.9	+50	+10.0	+1.7	+2.1	+1.0	+1.8	+9	+0.34	+0.74	+0.92	+1.00
Acc	65%	56%	82%	81%	82%	80%	80%	77%	73%	78%	39%	68%	67%	67%	68%	59%	72%	75%	60%	65%	65%	61%
Perc	5	25	24	6	85	75	88	80	99	50	43	91	15	16	14	20	60	90	64	29	38	41

Trait Observed: GL,CE,BWT,200WT,Genomics

FTW23U215

Lot 60 TWIN OAKS U215^{PV} (HBR)

Mating Type: Natural DOB: 11/09/2023 AMFU,CAFU,DDFU,NHFU MILLAH MURRAH PARATROOPER P15PV G A R ASHLANDPV Selection Index SIRE: FTW21S275 TWIN OAKS S275PV DAM: NZE20149120R080 TWIN OAKS CREEK R080PV \$PRO TWIN OAKS WILMA N097PV GOLDWYN G115# \$173 27 September 2024 TransTasman Angus Cattle Evaluation TACE STRUCTURAL CALVING EASE GROWTH FERTILITY CARCASE OTHER

Cable Instation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+5.2	+5.6	-6.0	+2.2	+57	+98	+125	+139	+8	+3.2	-5.6	+67	+3.4	+2.0	+1.8	+0.0	+1.3	+22	+0.10	+0.82	+1.12	+1.14
Acc	63%	54%	81%	80%	81%	79%	79%	76%	72%	77%	38%	67%	66%	66%	67%	58%	71%	74%	59%	66%	66%	64%
Perc	24	23	26	15	24	32	37	8	97	17	28	51	82	13	17	76	74	42	37	46	82	81

		т	'rans1	Tasma	an Ca	ttle Ev	valuat	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
Calving Ease Growth Fertility Carcase Growth Str															tructur	al						
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 61 TWIN OAKS U317^{PV} (HBR)

FTW23U317

Mating Type: Natural

DOB: 27/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

MUSGRAVE BIG SKY^{PV} DAM: NZE20149116M180 TWIN OAKS EBONY M180^{PV}

TWIN OAKS BESS Q216PV

SIRE: FTW21S033 TWIN OAKS S033PV

MATAURI F003^{sv}

Selection
Index
\$PRO
\$166
35

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	С	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	RUCTU	IRAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+10.4	+8.1	-0.6	+0.1	+38	+77	+87	+52	+24	+3.3	-4.8	+51	+5.5	+3.3	+4.2	-0.1	+3.3	+17	+0.84	+1.00	+1.08	+1.10
Acc	66%	57%	82%	81%	82%	80%	81%	78%	74%	79%	41%	69%	68%	68%	69%	60%	73%	75%	60%	66%	66%	61%
Perc	1	6	94	2	94	88	96	98	9	15	46	89	60	4	3	80	24	66	95	80	75	72

Trait Observed: BWT,200WT,Genomics

Lot 62 TWIN OAKS U267^{PV} (HBR)

FTW23U267

Mating Type: Natural

DOB: 16/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15^{PV} SIRE: FTW21S031 TWIN OAKS S031^{PV}

TWIN OAKS KOWKA Q146PV

TWIN OAKS P073^{PV} **DAM: NZE20149120R254 TWIN OAKS TESSA R254^{PV}** TWIN OAKS TESSA P088^{PV}

Selection
Index
\$PRO
\$114
83

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C.	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERI	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
transfarman Angue Cattle Traination	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	СМТ	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+4.5	+6.6	-6.0	+3.5	+50	+98	+122	+109	+10	+3.6	-1.7	+58	+3.3	-1.8	-2.1	+0.5	+0.9	+27	-0.14	+0.88	+0.94	+0.94
Acc	65%	55%	82%	81%	82%	80%	81%	77%	73%	78%	39%	68%	67%	67%	68%	58%	72%	74%	59%	63%	63%	57%
Perc	30	15	26	38	52	32	44	39	92	10	95	77	83	85	79	47	83	24	16	58	43	23

		Т	rans	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan [°]	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calvin	g Ease			(Growth	۱		Fert	ility			Card	case			Gro	wth	St	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

Lot 63 TWIN OAKS U241^{PV} (HBR)

FTW23U241

Mating Type: Natural

DOB: 13/09/2023

AMFU,CAFU,DDFU,NHFU

MILLAH MURRAH PARATROOPER P15PV

SIRE: FTW21S031 TWIN OAKS S031PV

TWIN OAKS KOWKA Q146PV

TWIN OAKS P039^{PV} **DAM: NZE20149120R290 TWIN OAKS PANSY R290^{PV}** TWIN OAKS N254^{SV}

Selection
Index
\$PRO
\$149
53

TACE							Se	ptemb	er 202	4 Tran	IsTasm	an Ang	gus Ca	attle E	valua	tion						
	С	ALVING	EASE	Ξ		Ģ	GROV	VTH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Cattle Trailution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+3.1	+7.1	-5.4	+3.0	+50	+86	+101	+62	+19	+3.2	-4.4	+62	+6.3	+0.5	+0.7	+0.5	+0.9	+10	+0.16	+0.68	+0.80	+0.86
Acc	63%	54%	81%	81%	82%	80%	80%	77%	72%	77%	38%	67%	67%	67%	68%	58%	72%	74%	59%	64%	64%	59%
Perc	43	11	34	28	56	69	84	94	35	17	56	66	50	37	32	47	83	87	44	19	15	9

		т	rans1	Tasma	in Ca	ttle Ev	valua	tion S	epter	nber 2	2024	Breed	lplan '	Table	s - BF	REED	AVEF	RAGE	EBV'	s		
		Calving	g Ease			(Growth	ו		Fert	ility			Card	case			Gro	wth	S	tructur	al
Breed	Cedir	Cedtr	GL	BW	200	400	600	мсพ	Milk	SS	DtC	сwт	EMA	Rib	P8	RBY	IMF	Doc	NFI-F	Claw	Angle	Leg
Av.	+1.8	+2.7	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.7	+67	+6.4	+0.0	-0.3	+0.5	+2.3	+0.22	+20	+0.84	+0.97	+1.02

			CALVIN	G EASE			GRO	WTH & MATE	RNAL	
	NAME / ID	CE DIR	CE DTRS	GL	BWT	200	400	600	Mwt	Milk
1	TWIN OAKS U061	+9.7	+2.1	-6.0	+0.7	+44	+81	+107	+80	+18
2	TWIN OAKS U021	+3.5	+0.7	-5.0	+3.6	+42	+74	+98	+62	+18
3	TWIN OAKS U003	+6.0	+0.7	-9.1	+3.0	+37	+66	+89	+77	+9
4	TWIN OAKS U139	+1.7	+4.0	-2.4	+3.9	+54	+102	+108	+99	+10
5 6	TWIN OAKS U067 TWIN OAKS U183	+6.5	+5.2	-6.7 -3.2	+3.2	+50	+91 +73	+118	+105	+14
7	TWIN OAKS 0185	+6.1 +6.3	+1.8 +3.5	-3.2	+1.0 +2.9	+40 +43	+73	+92 +105	+60 +87	+11 +15
8	TWIN OAKS U071	+4.5	+3.5	-9.2	+2.5	+63	+119	+105	+145	+15
9	TWIN OAKS U113	+6.5	+5.9	-6.3	+4.7	+60	+110	+141	+158	+2
10	TWIN OAKS U095	+6.5	+5.7	-8.6	+3.1	+51	+96	+131	+93	+27
11	TWIN OAKS U035	+6.9	+7.0	-3.0	+1.1	+45	+86	+105	+71	+11
12	TWIN OAKS U121	+7.5	+8.5	-3.6	+0.9	+42	+74	+90	+52	+15
13	TWIN OAKS U059	+3.4	+5.0	-2.9	+2.9	+45	+81	+102	+61	+19
14	TWIN OAKS U027	+6.5	+9.1	-4.2	+2.5	+45	+88	+118	+113	+15
15	TWIN OAKS U237	+7.0	+7.0	-4.9	+1.8	+47	+86	+101	+85	+10
16 17	TWIN OAKS U255 TWIN OAKS U227	+6.1 +7.9	+10.3 +5.9	-9.2 +0.2	+2.1 +1.1	+58 +51	+101 +91	+136	+114 +82	+19
17	TWIN OAKS U227	+7.9 +9.8	+5.9	-10.2	-0.9	+51	+91	+109 +109	+02 +74	+20 +27
19	TWIN OAKS U219	+4.5	+7.0	-1.6	+4.4	+60	+105	+105	+113	+18
20	TWIN OAKS U151	+9.1	+9.0	-5.6	+1.1	+41	+76	+99	+68	+17
21	TWIN OAKS U245	+6.8	+5.7	-3.4	+2.9	+54	+93	+120	+90	+16
22	TWIN OAKS U211	+5.3	+1.5	-2.3	+2.0	+49	+92	+127	+95	+28
23	TWIN OAKS U075	+5.6	+6.0	-8.2	+1.6	+62	+110	+145	+144	+7
24	TWIN OAKS U170	+2.8	+1.5	-6.4	+3.6	+42	+81	+108	+83	+19
25	TWIN OAKS U119	+6.6	-0.2	-3.0	+1.8	+48	+91	+117	+99	+19
26 27	TWIN OAKS U057 TWIN OAKS U025	+0.5	+1.8 -0.4	-3.6 -4.2	+4.9	+47 +20	+93	+114 +89	+110	+12
27	TWIN OAKS 0025	+0.4	+5.4	-4.2 -2.3	+0.9 +2.4	+39 +47	+75 +87	+09	+74 +78	+18 +15
29	TWIN OAKS U155	+3.0	+4.8	-4.2	+3.5	+54	+99	+125	+93	+18
30	TWIN OAKS U005	+7.4	+4.0	-9.1	+1.4	+42	+76	+97	+94	+20
31	TWIN OAKS U235	+3.4	+1.7	-5.1	+3.6	+47	+83	+99	+87	+14
32	TWIN OAKS U209	+3.3	+2.0	-2.4	+3.4	+48	+90	+107	+95	+14
33	TWIN OAKS U051	+7.0	-0.2	-3.0	+1.9	+37	+76	+86	+53	+20
34	TWIN OAKS U189	+4.2	+1.7	-1.8	+1.6	+49	+97	+114	+86	+12
35 36	TWIN OAKS U091 TWIN OAKS U013	+6.1	+2.3 +3.6	-5.4 -6.4	+3.7 +3.7	+44 +42	+83 +77	+100 +94	+63 +72	+8 +13
30 37	TWIN OAKS 0013	+2.2	+3.6	-6.4 -6.3	+3.7	+42 +46	+77 +85	+94 +106	+72 +94	+15
38	TWIN OAKS U149	+4.1	+1.7	-2.9	+2.6	+41	+77	+108	+69	+24
39	TWIN OAKS U257	+4.3	-2.9	-3.9	+3.3	+50	+97	+122	+116	+16
40	TWIN OAKS U287	+9.0	+8.4	-5.7	+0.4	+42	+79	+98	+88	+21
41	TWIN OAKS U273	+9.3	+8.1	-7.7	+0.7	+54	+100	+128	+96	+27
42	TWIN OAKS U305	+8.8	+7.2	-3.6	+1.3	+43	+90	+107	+73	+21
43	TWIN OAKS U243	+6.7	+7.2	-6.3	+1.7	+52	+101	+126	+113	+13
44	TWIN OAKS U307 TWIN OAKS U233	+5.4	+9.1	-0.9	+2.7	+56 +64	+93 +112	+115 +135	+82	+15 +18
45 46	TWIN OAKS U233	+8.7 +7.2	+10.2 +10.9	-11.4 -9.8	+2.0 +2.0	+64	+112	+135	+126 +108	+18
47	TWIN OAKS U009	+9.2	+10.3	-6.7	-0.7	+46	+86	+113	+102	+18
48	TWIN OAKS U129	+2.7	+4.1	-6.3	+4.6	+60	+99	+122	+119	+11
49	TWIN OAKS U283	+2.1	-0.6	-1.5	+4.8	+52	+89	+111	+86	+13
50	TWIN OAKS U093	+10.0	+4.0	-3.2	+0.4	+41	+75	+87	+58	+17
51	TWIN OAKS U239	+5.8	+5.3	-5.7	+2.6	+56	+99	+127	+101	+22
52	TWIN OAKS U081	+2.9	+3.3	-3.1	+2.9	+39	+74	+93	+78	+17
53 54	TWIN OAKS U247	+9.3	+6.2	-0.3	+0.1	+42	+85	+104	+74	+21
54 55	TWIN OAKS U007 TWIN OAKS U249	+8.0 +3.2	+7.1	-8.2 -3.3	+2.0	+42 +44	+85 +76	+111 +99	+79 +97	+19 +10
55 56	TWIN OAKS U249	+3.2	+1.3 +0.7	-3.3	+3.5	+44 +41	+76 +76	+99 +95	+97 +76	+10
57	TWIN OAKS U053	+5.8	+6.8	-3.3	+2.5	+41	+64	+90	+64	+14
58	TWIN OAKS U065	+10.0	+7.1	-3.4	-0.4	+31	+61	+74	+48	+16
59	TWIN OAKS U159	+8.4	+5.4	-6.1	+1.2	+42	+83	+98	+81	+6
60	TWIN OAKS U215	+5.2	+5.6	-6.0	+2.2	+57	+98	+125	+139	+8
61	TWIN OAKS U317	+10.4	+8.1	-0.6	+0.1	+38	+77	+87	+52	+24
62 62	TWIN OAKS U267	+4.5	+6.6	-6.0	+3.5	+50	+98	+122	+109	+10
63	TWIN OAKS U241	+3.1	+7.1	-5.4	+3.0	+50	+86	+101	+62	+19

Twin Oaks angus stud – te akau nz

	FERTILITY				CARCASE				INDEX	
22		CWT	EMA	DID	1	DDV	IME	NEI	i	A OD A .
SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI	\$PRO	A OR A +
+1.2 +2.1	-1.4 -5.1	+67	+7.6	+1.6	+1.7	+0.4	+2.0	+0.52	\$120	A .
+2.1	-5.1	+53 +65	+11.9	+1.8 +3.3	+1.6 +5.1	-0.8	+2.5	+0.18	\$167 \$161	A+ A+
+1.5	-7.3	+69	+0.3	-0.6	+1.4	+0.7	+2.4	+0.08	\$215	A+ A+
+1.5	-4.0	+60	+7.6	+1.4	+0.6	+0.1	+3.2	+0.15	\$167	A+
+1.7	-4.1	+56	+5.7	+2.8	+3.7	+0.1	+4.2	+1.35	\$176	A+
+1.3	-5.4	+60	+5.3	+0.9	-0.6	+0.7	+3.6	+0.09	\$168	A+
+4.3	-2.8	+90	+1.7	-0.9	-1.1	-0.7	+2.6	-0.10	\$148	A+
+0.6	-2.7	+84	+1.3	+0.7	+1.4	-0.8	+3.0	+0.47	\$164	A+
+3.1	-5.6	+84	+12.6	+3.9	+2.0	+0.6	+2.0	+0.54	\$196	A+
+4.2	-1.7	+60	+7.4	-0.1	+0.7	+0.3	+2.6	+0.84	\$149	A+
+2.3	-4.4	+54	+8.4	+0.7	+0.5	+0.5	+3.1	+0.60	\$171	A+
+1.6	-2.4	+56	+9.1	+2.4	+3.4	+0.0	+4.8	+1.02	\$167	A+
+4.5	-6.1	+68	+2.4	+2.8	+2.9	-0.5	+2.2	+0.66	\$165	A+
+2.6	-3.6	+67	+5.6	-0.9	-0.8	+0.6	+2.2	+0.59	\$154	A+
+1.3	-2.5	+78	-1.2	+0.6	+1.8	-1.8	+4.0	+0.05	\$144	A+
+1.9	-0.9	+81	+2.1	+0.1	+0.7	+0.0	+2.3	+0.28	\$117	A
+1.2 +1.7	-2.1 -2.9	+72 +80	-1.8 +8.8	+0.4 -0.5	+0.3 +0.3	-1.5 +0.1	+4.6 +2.8	+0.25	\$119	A
+1.7	-2.9	+54	+0.0	+0.4	-0.9	+0.1	+2.0	-0.01	\$169 \$177	A+ A+
+1.8	-6.5	+74	+0.3	+0.4	+5.0	-0.4	+3.6	+0.78	\$220	A+ A+
+1.0	-1.1	+72	+5.0	+0.3	+1.3	+0.3	+2.0	+0.80	\$108	Ат
+1.7	-3.6	+91	+4.9	+0.2	+1.9	-0.7	+3.5	+0.26	\$194	A+
+2.8	-3.9	+48	+13.2	+5.0	+5.8	+0.0	+3.4	+0.43	\$167	A+
+2.4	-4.5	+59	+7.8	+0.6	+0.2	+0.9	+0.8	-0.36	\$144	А
+1.3	-1.8	+70	+9.3	+0.2	+1.2	+0.5	+1.6	+0.49	\$113	
+3.8	-4.8	+49	+4.9	+1.9	+3.8	-0.3	+3.3	+0.71	\$140	A+
+1.4	-4.9	+67	+4.6	+0.7	+2.4	+0.8	+0.9	-0.18	\$168	А
+1.3	-2.7	+77	+3.1	-0.7	-0.2	-0.2	+2.8	+0.36	\$141	A+
+0.6	-3.9	+57	+5.7	-0.4	-1.8	+0.5	+4.8	+0.02	\$135	A+
+2.2	-3.7	+69	+8.9	-0.5	-1.4	+1.5	+1.8	+0.65	\$141	А
+2.0	-3.8	+66	+12.4	+1.7	+3.3	+0.9	+1.8	-0.14	\$168	А
+1.5	-4.9	+58	+8.3	+1.4	+3.0	+0.3	+4.7	+0.43	\$171	A+
+0.7	-4.6	+80	+9.4	+1.8	+4.2	+0.5	+1.3	+0.74	\$189	A
+1.2	-4.8	+56	+7.5	+1.1	+1.7	+0.8	+1.3	+0.42	\$178	A
+1.8	-1.6	+60	+9.6	+0.2	-0.4	+0.4	+3.7	+0.75	\$118	A
+1.5 +2.2	-3.2	+58 +72	+8.7	-0.2	+0.1 +0.4	+0.7	+2.8 +2.8	-0.13	\$159 \$146	A+
+2.2	-4.1 -3.8	+72 +69	+7.9 +7.1	+1.1 -2.8	-5.0	+1.0 +0.8	+2.0	+0.09 +0.57	\$146 \$129	A+ A
+3.1	-3.6	+69	+7.1	+3.6	+3.6	-0.2	+3.5	+0.95	\$129	A A+
+2.8	-4.6	+79	+3.1	-0.7	-2.3	-0.3	+3.5	+0.24	\$160	A+ A+
+1.5	-5.8	+74	+6.0	-0.2	-1.4	+0.5	+1.6	+0.57	\$160	A
+4.3	-4.0	+57	+2.2	+1.7	+0.8	-1.1	+2.7	+0.29	\$150	A+
+3.1	-5.3	+64	+7.8	+2.3	+3.1	+0.1	+1.3	+0.82	\$198	А
+3.0	-5.2	+77	+2.7	+0.4	+0.4	-0.4	+2.3	-0.48	\$194	A+
+4.1	-5.3	+73	+1.1	+0.5	-1.2	-0.4	+3.5	+0.49	\$181	A+
+0.5	-2.9	+59	+4.4	+0.8	+1.2	-0.1	+1.0	-0.47	\$122	А
+2.5	-3.5	+68	+5.5	-3.2	-4.1	+1.6	+1.3	+0.02	\$150	А
+0.8	-4.5	+71	+9.5	-0.4	+0.6	+1.3	+0.4	+0.13	\$159	А
+3.1	-4.4	+54	+7.1	-0.9	+0.4	+0.9	+2.0	+0.33	\$150	А
+1.3	-5.5	+85	+0.8	+0.3	+0.5	+0.3	+1.1	-0.04	\$165	А
+1.6	-1.2	+41	+7.3	-0.7	-1.8	+1.1	+1.3	+0.04	\$75	
+1.3	-5.0	+69	+9.6	+2.0	+2.6	+0.7	+1.8	+0.39	\$175	Α
+3.8	-5.3	+66	+7.4	+3.9	+4.3	+0.1	+0.7	+0.81	\$167	A
+2.7	-3.5	+56	+6.6	+2.2	+0.9	+1.2	+0.5	+0.35	\$121	A
+1.7	-2.8	+47	+9.2	+0.8	+1.3	+0.5	+2.7	+0.18	\$118	A
+1.2	-4.5	+40	+8.6	+4.2	+4.4	-0.1	+3.3	+0.73	\$141	A+
+1.4	-3.6	+48	+7.0	+0.9	+0.1	+0.9	+2.4	+0.44	\$124	A
+2.1	-4.9 -5.6	+50	+10.0	+1.7 +2.0	+2.1	+1.0	+1.8	+0.34	\$191 \$173	A A
+3.2 +3.3	-5.6 -4.8	+67 +51	+3.4 +5.5	+2.0 +3.3	+1.8 +4.2	+0.0 -0.1	+1.3	+0.1 +0.84	\$173 \$166	A A+
+3.5	-4.0	+51	+3.3	-1.8	-2.1	+0.1	+3.5	-0.14	\$100	AT
+3.0	-1.7	+58	+5.3	+0.5	+0.7	+0.5	+0.9	+0.14	\$114 \$149	А
									÷	

2024 REFERENCE SIRES

MM RECTOR R53

WAITARA QUIDDITCH

DUNTROON RECHARGE

DUNOON RECHARGE R102PV (HBR) RS

Mating Type: Al

DOB: 03/07/2020

DUNOON HACKING H061PV

H P C A INTENSITY# SIRE: RENNYLEA L519PV

RENNYLEA H414sv

DAM: DUNOON ELINE M459^{sv}

DUNOON ELINE K595#

Dunoon Recharge R102 was used as an AI sire. His combination of carcass weight in the top 4%, IMF top 15% and positive fats is a hard combination to find. Recharge had so much demand in Australia we were only able to secure his semen for one season.

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	tion						
1998. 1998.	C	ALVING	EASE	Ξ		G	ROV	/TH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
Transflaeman Aegua Gattle Chaluadem	CEDir	EDir CEDtrs GL BW 200 400 600 MCW									DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.3	+7.6	-8.1	+2.5	+61	+117	+148	+138	+8	+1.1	-4.5	+94	+5.5	+1.1	+2.4	-0.5	+4.0	+30	+0.45	+0.66	+0.60	+0.90
Acc	82%	66%	98%	98%	97%	94%	89%	85%	78%	91%	54%	80%	78%	79%	79%	73%	80%	95%	67%	82%	82%	79%
Perc	10	8	7	19	12	4	6	8	97	83	53	4	60	25	12	92	13	17	75	16	1	15

Trait Observed: BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Genomics

WAITARA QUIDDITCH Q43^{PV} (HBR) RS

Mating	з Туре	e: Al								DOB:	21/07/	2019					AN	/IF,CA	F,DDF MH	· ·		,MAF, 5 <u>,RGF</u>
		G A	RSU	RE FI	REsv									DU	NOON	1 GOO	DTHI	NG G1	67 ^{PV}			
SIRE: G	ARP	HOENI	(^{PV}								DAM	I: WAI	FARA	GT R		68 ^{sv}						
		G A	RPR	OPHE	ET N7	'44#								WA	ITARA	A EV R	ITA H	56 ^{sv}				
																		Select	tion Inc	lex		
		Waitara																\$	PRO		Л	
)7 back i keted an							Carcas	se weig	int in th	e top 28	3% OT 1	ine bre	ea. H	is sem	en –	\$	5194			
					0														12			
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
\mathbb{N}	С	ALVING	EASE	Ξ		Ģ	ROW	/TH		FERT	FILITY			CARC	CASE			ОТІ	HER	STR	UCTU	IRAL
TurnTarman Argua Cattle Distustore	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.4	+2.1	-1.5	+1.8	+50	+89	+106	+77	+14	+2.4	-5.5	+76	+8.1	-0.4	+0.7	+0.6	+2.8	+22	+0.50	+0.86	+0.78	+0.94
Acc	82%	65%	98%	98%	96%	96%	94%	90%	81%	93%	52%	82%	83%	82%	82%	77%	83%	93%	69%	94%	94%	91%
Perc	9	61	88	11	52	58	76	85	71	39	30	28	30	58	32	41	34	41	79	54	12	23

Trait Observed: GL,BWT,200WT,400WT,Scan(EMA,Rib,Rump,IMF),Genomics

RS	MILLAH MURRAH RECTOR R53 [₽] (HBR)	NMMR53
Moting Type	Al DOB : 30/01/2020	AMF,CAF,DDF,NHF,DWF,MAF,
Mating Type:	AI DOB: 30/01/2020	MHF,OHF,OSF,RGF

COONAMBLE HECTOR H249^{sv}

ASCOT HALLMARK H147PV

SIRE: MILLAH MURRAH NECTAR N334PV

DAM: MILLAH MURRAH BRENDA N72PV

MILLAH MURRAH PRUE H113PV

MILLAH MURRAH BRENDA K62PV

Selection Index

\$PRO

\$172

Millah Murrah Rector R53 was purchased in partnership with Springwaters Stud NSW. We love his softness and data set as well as his conformationa and type. His EBV's feature EMA and fats in the top 7% of the breed as well as an IMF of +4.2. His EBV for all three feet and leg EBV's are in the top 4% of the breed. ABS has started marketing his semen

marketi	ing inio (semen.																	28			
TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	valua	ation						
TACE	C.	CALVING EASE GROWTH FERTILITY CARCASE																ОТ	HER	STF	RUCTL	JRAL
Gattle Chaluadore	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+0.9	-0.6	-9.9	+5.6	+44	+78	+114	+96	+16	+1.2	-5.2	+60	+11.9	+3.8	+3.1	+0.2	+4.2	+37	+0.12	+0.52	+0.54	+0.80
Acc	77%	62%	97%	97%	95%	94%	90%	86%	79%	92%	49%	80%	81%	81%	81%	75%	81%	93%	67%	66%	67%	66%
Perc	63	82	2	82	79	86	60	60	60	81	36	72	6	3	8	65	11	6	39	4	1	4

Trait Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Genomics

BHRR102

AMF,CAF,DDF,NHF,DWF,MAF, MHF,OHF,OSF,RGF

Selection Index

\$PRO

\$230

2

BSCQ43

TWIN OAKS S015^{PV} (HBR)

FTW21S015

Mating Type: Al

RS

DOB: 08/08/2021

KAKAHU KEYSTONE 14468#

SIRE: MILLAH MURRAH PARATROOPER P15PV

MILLAH MURRAH ELA M9PV

EF COMMANDO 1366PV

DAM: TWIN OAKS WILMA Q204PV

TWIN OAKS WILMA M95PV

S15 was our Lead off bull at the 2023 June bull sale selling Lot 1 to Tongariro Prison Farm for \$12,000. S15 short gestation of -10 puts him in the top 2% of the breed and he has since been picked up by GENEZ and his semen is being sold into the Dairy industry.

Selection Index	
\$PRO	
\$153	
48	

AMFU,CAFU,DDFU,NHFU

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
\sim	C	ALVING	EASE	Ξ		Ģ	BROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	IRAL
Cattle Dealoadem	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+9.4	+9.3	-10.1	+1.1	+49	+95	+118	+91	+22	+2.1	-4.0	+71	+0.7	+0.3	-0.7	-0.6	+3.8	+23	+0.36	+0.86	+0.96	+1.12
Acc	70%	61%	83%	89%	87%	84%	84%	82%	76%	80%	44%	74%	70%	71%	71%	64%	74%	81%	62%	75%	75%	68%
Perc	3	2	2	6	57	40	52	67	16	50	65	41	96	42	56	94	16	40	66	54	48	77

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

F	RS	Type: Al DOB: 11/08/2021 EF COMMANDO 1366 ^{PV} STERN CHIEF 09418 [#] LLAH MURRAH PARATROOPER P15 ^{PV} DAM: TWIN OAKS J133 ^{sv}														FΤ	W21	S02	7			
Mating	д Туре	EF COMMANDO 1366 ^{PV} STERN CHIEF 09																A	MFU,C	CAFU,	DDF,I	NHFL
	MILLAH MURRAH PARATROOPER P15 ^{PV} DAM: TWIN OAKS J133 ^{SV}															09418	;#					
IRE: N																						
	MILLAH MURRAH ELA M9 ^{PV} TWIN OAKS HEAVE															EAVEN	N G118	3#				
	MILLAH MURRAH ELA M9 ^{PV} TWIN OAKS HEAVE																Selec	tion Inc	lex			
																		\$	PRO			
Dovid L	Jondor	iderson, Waimate, purchased S27 for \$9,000. A strong Paratrooper son																	100			
David H	Henders	nderson, Waimate, purchased S27 for \$9,000. A strong Paratrooper son																1	\$109			
David H	Henders	son, Wa	inate,	purci	laooa			,		-	-							1	85			
		son, Wa						ptemb	oer 202	24 Tran	nsTasm	an Ang	jus Ca	attle E	Evalua	ation						
		son, Wa		·				-	oer 202		nsTasm TILITY	an Ang		attle E		ation				STF	RUCTU	IRAL
	C.		EASE	·	200		Se	-	ber 202 Milk			an Ang CWT		CARC		ation RBY	IMF		85 HER		RUCTL Foot	
	C.	ALVING	EASE	E		G 400	Se ROW 600	VTH		FERT	TILITY			CAR(Rib	CASE		IMF -0.2	OT	85 HER	Claw		Leç
EBV Acc	C. CEDir	ALVING CEDtrs	EASE GL	BW +5.1	200 +59	G 400	Se 600 +118	VTH MCW +100	Milk	FERT SS	DtC	CWT	EMA	CARC Rib +0.1	P8 +0.2	RBY		OT	85 HER NFI-I	Claw	Foot	Leg

TWIN OAKS S031PV (HBR) RS

23 60 57 72 82

SIRE: N	IILLAH		AH PA LAH N								DAN	I: TWI	N OAP			Q146 KS K0		K113 ^s	8V			
S31 res	31 resides at Cloudy Range one of the Rooney Farms.																	\$	tion Inc PRO \$135 66	lex	ļ	ł
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	6 EASE	Ξ		Ģ	ROV	VTH		FERT	FILITY			CARC	ASE			ОТ	HER	STR	UCTU	IRAL
Cattle Dealordeen	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+6.1	+8.7	-7.4	+2.7	+49	+90	+109	+80	+18	+2.1	-2.5	+69	+6.1	+0.0	-0.4	+0.3	+1.9	+14	+0.17	+0.90	+0.80	+0.86
Acc	71%	62%	83%	88%	86%	84%	84%	82%	77%	80%	46%	74%	71%	72%	72%	64%	75%	78%	64%	75%	76%	68%

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

50

41

4

12

17

Perc

90

45

53 49 51 59 58

75

45

G A R MOMENTUMPV

AMFU,CAFU,DDFU,NHFU

62

15

9

FTW21S031

DOB: 12/08/2021

EF COMMANDO 1366PV

Mating Type: Al

TWIN OAKS S033PV (HBR) RS

DOB: 12/08/2021

AMFU,CAFU,DDFU,NHFU

FTW21S033

\$PRO

\$161 39

Mating Type: Al

EF COMMANDO 1366PV

SIRE: MILLAH MURRAH PARATROOPER P15PV

MILLAH MURRAH ELA M9PV

BEN NEVIS METAMORPHIC M51^{sv}

DAM: TWIN OAKS BESS Q216PV

TWIN OAKS BESS K139#

Selection Index

A partnership of Dougal and Mary Cottier, Albury, and The Inch family of Cheviot purchased S33 for \$19,000 in June 2023. They have used him naturally and had great results with AI as well.

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	gus Ca	attle E	Valua	ation						
	C	ALVING	EASE	Ξ		Ģ	ROV	VTH		FERT	FILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Cattle Coaluadam	CEDir	CEDir CEDtrs GL BW 200 400 600 MCW									DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+8.2	+3.8	-4.5	+1.9	+51	+97	+112	+89	+17	+3.3	-3.1	+64	+8.9	+1.1	+1.5	+0.5	+1.7	+21	+0.64	+0.98	+0.96	+0.92
Acc	70%	61%	83%	84%	84%	82%	83%	80%	76%	80%	45%	72%	71%	71%	71%	64%	74%	78%	62%	75%	75%	68%
Perc	6	43	48	12	47	35	66	70	53	15	83	60	22	25	20	47	63	47	88	77	48	19

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

F	RS	T۱	WIN	OA	KS	S08	9 ^{PV}	(HB	R)									FT	W21	S089	9	
Mating	д Туре	e: Al								DOB:	16/08/	2021					AN	/IF,CA	NF,DDF MH			,MAF, RGF
		EF	COM	MAND	O 13	66 ^{PV}								GΑ	RM	OMEN	TUMPV					
SIRE: N	IILLAH	MURR	AH PA	RATE	ROOF	PER P	15 ^{₽V}				DAM	I: TWI		(S CA	ROL	N037 [₽]	v					
	MILLAH MURRAH ELA M9 ^{PV} TWIN OAKS CAI															ROL	L73#					
	MILLAH MURRAH ELA M9 ² TWIN OAKS CAH																Select	tion Inc	lex			
000	- 41 4	s the top priced bull at the 2023 June bull sale, selling to Wilkins farming in Southland for \$27,000.																\$	PRO			
589 Wa	as the to	op price		at the	2023	June	DUII S	ale, se	elling to	VVIIKIN	is tarmi	ng in S	outnia	na tor	\$27,0	000.		\$	\$126			1
																			74			
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	Evalua	ation						
	С	ALVING	EASE	Ξ		Ģ	ROV	VTH		FER	FILITY			CARC	CASE			ОТ	HER	STR	UCTU	IRAL
TransTooman Angue Cattle Dealoidem	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+2.6	+4.7	-5.8	+4.7	+55	+99	+133	+109	+19	+1.9	+0.2	+75	+10.6	+0.2	+0.2	+0.1	+3.4	+28	+0.50	+0.68	+0.78	+0.94
Acc	71%	62%	90%	88%	87%	84%	84%	82%	77%	80%	46%	75%	71%	72%	72%	64%	75%	79%	63%	75%	75%	72%
Perc	48	33	28	66	30	29	22	38	33	58	99	29	11	44	40	71	22	20	79	19	12	23

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Matin	д Туре	: Al							I	DOB:	16/08/	2021					٨N	/IF,CA	F,DDF MH	F,NHF	<i>,</i>	,
		EF	COM	MAND	O 13	66 ^{PV}								EX	AR MO	DNUM	ENTAI	_ 6056		,		,
BIRE: N	/IILLAH	MURR	AH PA	RATE	ROOP	PER P	15 ^{₽V}				DAM	/I: TWII		(S CR	EEK	Q060 ^P	v					
		MIL	LAH M	MURR	AH E	LAM	9 ^{PV}							GO	LDW	N G1	15#					
																		Select	tion Inc	lex		
	ert Statio	•						•	•									\$	PRO			
								/ s and	paren	tage. V	Ve have	e seen	him tv	lice si	nce se	elling r		\$	\$185			+
	has gro							/ s and	paren	tage. v	Ve have	e seen	him tv	lice si	nce se	elling r		9	5185 18		-	
and he											Ve have							\$				
	has gro		a bull	we ai		oud of!		ptemb		4 Tran			gus Ca		Evalua					STR	RUCTL	
and he	has gro	own into	e a bull	we ai		oud of!	Se	ptemb VTH		4 Tran	ısTasm		gus Ca	attle E	Evalua				18 HER	STR	RUCTL	
and he	has gro	own into	e a bull	we a	re pro 200	oud of!	Se ROV	ptemb VTH MCW	ber 202	4 Tran	IsTasm FILITY	an Ang CWT	gus Ca	Attle E	Evalua CASE	ation		OTI	18 HER		RUCTL Foot	JRAL Leg
and he	has gro C. CEDir	ALVING CEDtrs	EASE GL	we an BW +1.1	200 +56	oud of! G 400	Se 600 +118	vTH MCW +94	Der 202 Milk	4 Tran	ISTASM	an Ang CWT	gus Ca	attle E CARC Rib -1.9	Evalua CASE P8	ation RBY	IMF	OTI	18 HER NFI-I -0.23	Claw	RUCTL Foot	JRAL Leg

Trait Observed: CE,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

TWIN OAKS S123^{PV} (HBR)

DOB: 18/08/2021

TWIN OAKS J049#

TWIN OAKS FUCHSIA J070#

DAM: TWIN OAKS BESS L150#

EF COMMANDO 1366PV SIRE: MILLAH MURRAH PARATROOPER P15PV

RS

Mating Type: Al

RS

Twin Oaks

ANGUS STUD - TE AKAU NZ

MILLAH MURRAH ELA M9PV

Ribbonwood Station from Omarama purchsed S123 for \$16,000 in June 2023. A paratropper son with a whopping +4.7 IMF EBV puts him in the top 6% of the breed.

TACE							Se	ptemb	er 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
	C	ALVING	EASE	Ξ		Ģ	BROV	VTH		FERT	TILITY			CARC	CASE			ОТ	HER	STR	UCTL	JRAL
Cattle Dealuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+2.6	+2.4	-8.0	+5.0	+48	+90	+124	+100	+17	+1.0	-4.3	+67	+4.7	-0.2	-3.0	+0.1	+4.7	+16	+0.37	+0.84	+0.76	+1.04
Acc	69%	60%	83%	85%	85%	83%	83%	81%	76%	80%	44%	73%	71%	71%	72%	64%	75%	77%	62%	74%	74%	71%
Perc	48	58	8	72	62	57	38	53	50	86	58	52	70	53	88	71	6	67	67	50	10	54

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

ſ	RS		VIN	OA	KS	514	5 ^{PV}	(HB	R)									FΤ	W21	S14	5	
Mating	д Туре	: Al								DOB:	19/08/	2021						AMF	FU,CA	FU,DI	DFU,I	NHFU
		LD	CAPIT	ALIST	Г 316	PV								BUI	BS SC	OUTHE	RN C	HARN	I AA31	PV		
BIRE: T	WIN O	AKS P1	83 ^{PV}								DAM	I: TWI		KS BR	ONN	E Q04	4 ^{PV}					
		TW	IN OA	KS VA	LEN	TINE	M52 [₽]	v						ΤW	IN OA	KS KC	60 ^{sv}					
																		Select	tion Inc	lex		
Mt Cre	ighton S	Station a	at Glen	orchy	purc	hased	I S14	5 in 20	23 for	\$10,00	0. He h	nas fats	in the	e top 1	% of t	the bre	ed	\$	PRO			
										. ,				•				9	6147			
	till main	itaing a	+75 C\	vv.																		
	till main	itaing a	+75 C\	vv.															54			
vhile s		itaing a	+75 C\	vv.			Se	eptemb	oer 202	4 Tran	sTasm	an Ang	gus Ca	attle E	Ivalua	ation						
vhile s		ALVING				G	Se BROV	-	oer 202		sTasm TLITY	an Ang	-	attle E		ation				STF	RUCTL	IRAL
vhile s	С				200	G 400	ROV	-	oer 202 Milk			an Ang CWT	-	CARC		ation RBY	IMF		54 HER	STF		
Note that the second se	С	ALVING	EASE	Ξ	200 +46	400	ROV	vтн мсw		FERT	TILITY			CAR(Rib	P8	RBY	IMF +1.8	OTI	54 HER NFI-I	Claw		Le
	CEDir	ALVING CEDtrs	EASE GL	BW +2.5	+46	400	600 +111	VTH MCW +81	Milk	FERT SS	DtC	СМТ	EMA	CARC Rib +4.5	P8 +7.1	RBY -0.7		OTI	54 HER NFI-I	Claw	Foot	Le

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

TWIN OAKS S151^{PV} (HBR)

Mating	д Туре	: Al								DOB:	19/08/	2021						AMF	U,CA	FU,D	DFU,N	IHFU
		LD	CAPIT	TALIS"	Т 316	PV								IRE	LAND	S GAF	PSTEE) G25 ⁱ	⊳v			
SIRE: T	WIN O	AKS P1	83 ^{PV}								DAN	I: TWI	N OAM	(S WI	NIFRE	ED L32	#					
		TW	IN OA	KS VA	ALEN	TINE	M52 [⊳]	v						ΤW	IN OA	KS WI	NIFR	ED J14	46#			
																		Select	tion Ind	lex		
S151 io	pined th	ne West	Wanal	ka tea	m of	bulls.	sellin	a for \$	8.000 a	at the J	une 20	23 sale	. He h	as fat	s in th	e top 2	2%	\$	PRO			
and 5%						,		0	,									9	5188			1
																			16			
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	valua	ation						
IACE	C					~																
 No.254 		ALVING	EASE	Ξ		G	ROV	VTH		FER	TILITY			CAR	CASE			OT	HER	STF	RUCTU	RAL
Nurs Taenae Angue Gattle Deduation		CEDtrs		BW	200	400		MCW	Milk	SS	DtC	CWT	EMA	CARC Rib	P8	RBY	IMF	OT DOC		STF Claw	1	RAL Leg
EBV		1			200 +50	400		MCW	Milk +19			CWT +58				RBY -1.6	IMF +3.7		NFI-I	Claw	1	Leg
	CEDir	CEDtrs	GL	BW +2.2	+50	400	600 +113	MCW +95		SS	DtC	-	EMA	Rib +4.1	P8 +3.8			DOC	NFI-I	Claw	Foot	Leg

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

AMFU,CAFU,DDFU,NHFU

Selection Index \$PRO

> \$149 52

FTW21S151

FTW21S123

TWIN OAKS S197PV (HBR) RS

DOB: 23/08/2021

KAKAHU KEYSTONE 14468#

EF COMMANDO 1366PV SIRE: MILLAH MURRAH PARATROOPER P15PV

Mating Type: Al

MILLAH MURRAH ELA M9PV

DAM: TWIN OAKS WILMA P006PV

TWIN OAKS WILMA K087#

S197 made \$20,000 and was sold to stud at the 2023 June sale. Puketi, Northland was the successful purchaser

\$PRO

	September 2024 TransTasman Angus Cattle Evaluation	
		55
of a well balan	ce Paratrooper son.	\$146

TACE								promis		- nan	0.001	anyang	,		···aiae							
200	C.	ALVING	EASE	Ξ		G	ROV	VTH		FERT	TILITY			CARC	ASE			ОТ	HER	STR	UCTL	IRAL
Cattle Division	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+7.2	+8.4	-9.9	+2.6	+51	+98	+115	+97	+16	+3.5	-2.6	+64	+7.1	-0.3	-2.1	+0.2	+3.0	+18	+0.32	+0.94	+1.20	+1.04
Acc	70%	62%	83%	84%	85%	83%	83%	81%	77%	80%	45%	73%	71%	71%	72%	65%	75%	79%	63%	71%	75%	70%
Perc	10	5	2	21	51	32	58	58	59	12	89	60	41	56	79	65	30	61	62	70	92	54

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

F	RS	T٧	VIN	OAł	<s< th=""><th>S21</th><th>1^{PV}</th><th>(HBI</th><th>R)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>FT</th><th>W21</th><th>S21[·]</th><th>1</th><th></th></s<>	S21	1 ^{PV}	(HBI	R)									FT	W21	S21 [·]	1	
Mating	д Туре	: Al								DOB:	24/08/	2021						AMF	₹U,CA	FU,DI	DFU,N	IHFU
IRE: N	1ILLAH	MURR	COMN AH PA I LAH N	RATR	OOP	ER P					DAN	I: TWI		(S DE	LI P2	FALIST 04 ⁰V .KS DE						
			of Oo	marur	ourch	sed S	211 f	or \$17	000 H	e has s	trona p	ositive f	ats, w	ith a g	reat IN	∕IF of ⊡		\$	tion Inc PRO	lex	A	+
Rob and	d Jane	McClure												ottlo F	volue	tion			50		_	-
Rob and		ALVING						ptemb		4 Tran	IsTasm FILITY			attle E		ation				STR	RUCTU	RAL
	C		EASE		200	G	Se	ptemb		4 Tran	IsTasm			CARC		RBY	IMF		50 HER			RAL
	C	ALVING	EASE GL	BW		G 400	Se	ptemb /TH MCW	oer 202	24 Tran	IsTasm	an Anç		CAR(Rib	P8		IMF +4.0	OT	50 HER NFI-I		Foot	Le
	C CEDir	ALVING CEDtrs	EASE GL -2.8	BW	200 +50	400 +85	Se 600 +105	ptemb /TH MCW	per 202 Milk	FER	sTasm FILITY DtC	an Ang CWT	EMA	CARC Rib +1.0	P8 +0.8	RBY		OT	50 HER NFI-I	Claw	Foot	Le

WT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genom

F	RS	T\	WIN		KS	S27	5 ^{PV}	(HB	R)									FT	W21	S27	5	
Mating	д Туре	: Al							I	DOB:	29/08/	2021							٨N	1F,CA	F,DDF	,NHF
SIRE: N	IILLAH	MURR	COMN AH PA	RATE	ROOP	PER P					DAN	A: TWII	N OAP	(S WI		NO97°∿ NO97°∿	,					
																			tion Inc	lex		_
S275 w	as solo	to Wall	ingford	d Angı	us, Ha	awkes	Bay,	for \$2	0,000.										PRO			
																		9	\$198			
	1																	4	5198 10			
TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Anç	jus Ca	attle E	Ivalua	ation		4				
\mathbb{N}	С	ALVING	EASE	=		G	Se ROW	-	oer 202		IsTasm	an Ang	-	attle E		ation				STR	RUCTU	IRAL
		ALVING CEDtrs		BW	200	G 400	ROW	-	per 202 Milk			an Ang CWT	-	CARC		ation RBY	IMF		10 HER	STR		
2N						400	600	/TH		FER	FILITY			CARC	CASE		IMF +2.0	OT	10 HER		Foot	Leg
Cattle Durbuller	CEDir	CEDtrs	GL	BW +2.8	+64	400	600 +149	/TH MCW +146	Milk	FER SS	DtC	CWT	EMA	CARC Rib +0.7	P8	RBY		OT	10 HER NFI-I	Claw	Foot	Leg

Trait Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

AMF,CAF,DDF,NHF

Selection Index

RS TWIN OAKS R053^{PV} (HBR)

NZE20149020R053

Selection Index \$PRO

> \$146 55

AMF,CAF,DDF,NHF,DWF,MAF, MHF,OHF,OSF,RGF

Mating Type: Al

DOB: 11/08/2020

3F EPIC 4631[#] SIRE: EXAR MONUMENTAL 6056B^{PV}

FWY 7008 OF C085 4029#

MUSGRAVE BIG SKYPV DAM: TWIN OAKS BRAID M172PV

TWIN OAKS BRAID H39#

R53 stands at stud at Rockley Angus, Southland. He was sold in the Spring 2021 sale.

TACE							Se	ptemb	oer 202	4 Tran	sTasm	an Ang	jus Ca	attle E	Evalua	ation						
	С	ALVING	EASE	Ξ		Ģ	BROV	VTH		FER	FILITY			CARC	CASE			ОТ	HER	STR	NUCTU	IRAL
Cattle Ovaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DtC	CWT	EMA	Rib	P8	RBY	IMF	DOC	NFI-I	Claw	Foot	Leg
EBV	+8.6	+9.1	-6.1	+1.1	+52	+99	+127	+113	+16	+2.2	-3.1	+72	+4.3	+0.4	-0.3	-0.2	+2.0	+36	+0.20	+0.88	+0.88	+0.92
Acc	74%	60%	92%	91%	90%	89%	89%	84%	77%	86%	47%	77%	75%	76%	76%	70%	77%	85%	62%	71%	71%	64%
Perc	4	3	24	6	43	30	32	33	59	46	83	36	74	39	49	84	55	6	48	58	29	19

Trait Observed: CE,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

F	RS	TWIN OAKS P073 ^{PV} (HBR) pe: Natural DOB: 23/08/2018															NZ	ZE2()149	018F	P 073	3
Matin	д Туре	ODB: 23/08/2018 CONNEALY CAPITALIST 028#														AN	ЛF,CA	NF,DDF MH	F,NHF IF,OHI			
		CONNEALY CAPITALIST 028 [#] G A R PROPHE CAPITAL IST 316 ^{PV} DAM: TWIN OAKS BREEZE M12													CYsv							
SIRE: L	D CAP	CAPITALIST 316 ^{PV} DAM: TWIN OAKS BREEZE M1													E M127	PV						
		LD	DIXIE	ERIC	A 205	53#								ΤW	IN OA	KS J1	09#					
																		Selec	tion Inc	dex		
D70								0										\$	PRO			
P/3 a (capitalis	st son w	as solo	a to vv	iikins	tarmi	nain	South	and at	The III												
	•					lainn	ng m	coutin	und ut		16 2020	5 3010.						9	\$159			
	·							oouun				5 3010.						9	\$159 42		-	
TACE											IsTasm		jus Ca	attle E	valua	ation						
	C	ALVING						ptemb		4 Tran			·	attle E		ation				STR	RUCTL	IRAL
TACE					200		Se	ptemb		4 Tran	IsTasm		·			ation RBY	IMF		42 HER	STR	RUCTL Foot	
\mathbb{N}		ALVING	EASE	Ξ		G 400	Se	ptemb VTH MCW	oer 202	4 Tran	IsTasm FILITY	an Anç		CARC	CASE		IMF +1.8	OT	42 HER	Claw	Foot	Leg
There is a second secon	CEDir	ALVING CEDtrs	EASE GL	BW +2.8	200 +47	G 400	Se SROW 600 +106	ptemb VTH MCW	per 202 Milk	4 Tran FER SS	ISTASM	an Ang CWT	EMA	CARC Rib	P8	RBY		OT	42 HER NFI-I	Claw	Foot	Leg

Trait Observed: CE,BWT,200WT,400WT(x2),600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

NO

Angus Australia Disclaimer and Privacy Information

Attention Buyer

Animal details included in this catalogue, including but not limited to pedigree, DNA information, Estimated Breeding Values (EBVs) and Index values, are based on information provided by the breeder or owner of the animal. Whilst all reasonable care has been taken to ensure that the information provided in this catalogue was correct at the time of publication, Angus Australia will assume no responsibility for the accuracy or completeness of the information, nor for the outcome (including consequential loss) of any action taken based on this information.

Parent Verification Suffixes

The animals listed within this catalogue including its pedigree, are displaying a Parent Verification Suffix which indicates the DNA parent verification status that has been conducted on the animal. The Parent Verification Suffixes that will appear at the end of each animal's name.

The suffix displayed at the end of each animal's name indicates the DNA parentage verification that has been conducted by Angus Australia.

- PV: both parents have been verified by DNA.
- SV: the sire has been verified by DNA.
- DV: the dam has been verified by DNA.
- #: DNA verification has not been conducted.
- DNA verification has identified that the E: sire and/or dam may possibly be incorrect, but this cannot be confirmed conclusively.

Privacy Information

In order for Angus Australia to process the transfer of a registered animal in this catalogue, the vendor will need to provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by Angus Australia in certain circumstances. If the buyer does not wish for his or her information to be stored and disclosed by Angus Australia, the buyer must complete the form included below and forward it to Angus Australia. If the form is not completed, the buyer will be taken to have consented to the disclosure of such information.

Buyers option to opt out of disclosing personal information to Angus Australia

If you do not complete this form, you will be taken to have consented to Angus Australia using your name, address and phone number for the purposes of effecting a change of registration of the animal(s) that you have purchased, maintaining its database and disclosing that information to its members on its website.

I, the buyer of animals with the following idents

5,	(name) do not consent to Angus Australia er for the purposes of effecting a change of registration of the animals I have maintaining its database and disclosing that information to its members on Signature:
Date:	

Please forward this completed consent form to Angus Australia, 86 Glen Innes Road, Armidale NSW 2350

ANGUS office@angusaustralia.com.au | 02 6773 4600 | Angus Australia Locked Bag 11, Armidale NSW 2350 www.angusaustralia.com.au 0 0 0 0 0

Australia's leading specialists in primary industry development.

We can help your business grow.

ogacreative.com.au

STRATEGY | CREATIVE | MEDIA

BUYERS INSTRUCTION SLIP

To be completed and handed to Agents before leaving the Sale

No verbal instructions can be accepted	
Name	
Address	
Telephone NAIT Numb	per
Herd no. & Prefix (if society registration is require	ed)
Email:	
Lot Purchased	
Lot: Lot:	:
Total no. purchased	
Please describe the arrangements you have made	e to take delivery of your purchase.
Company to debit	
Insurance Required (please circle) YES NO	
Insure for (state period)(months)	(Year)
Insurance Company: 🗌 FMG 🛛 Aon	
Transport is paid by Twin Oaks Angus – please leave details of any special instructions	S.
Signed:	Date:

NOTES

NOTES

Waipapa Station 163 Clemett Road Te Akau